【題目】已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式上恒成立,求實數(shù)a的取值范圍;

(Ⅲ)若,求證不等式.

【答案】(1) g(x)的增區(qū)間,減區(qū)間;(2) ;(3)見解析.

【解析】試題分析:(1)根據(jù)導數(shù)的正負情況研究函數(shù)的單調(diào)性;(2)恒成立求參轉(zhuǎn)化為 恒成立,求到研究函數(shù)單調(diào)性和最值;(3)轉(zhuǎn)化為上恒成立。通過求導研究函數(shù)單調(diào)性,求得函數(shù)最值。

(Ⅰ)g(x)的定義域為 , , 時, 上恒成立

所以g(x)的增區(qū)間,無減區(qū)間當時,令

所以g(x)的增區(qū)間,減區(qū)間 .

(Ⅱ)上恒成立

設(shè),考慮到

,在上為增函數(shù), ,

時, , 上為增函數(shù), 恒成立

時, , 上為增函數(shù)

,在上, , 遞減,

,這時不合題意, 綜上所述,

(Ⅲ)要證明在上,

只需證明 ,由(Ⅱ)當a =0時,在上, 恒成立, 再令, 在上, 遞增,所以,相加,得,所以原不等式成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=|x﹣3|+|x﹣4|. (Ⅰ)解不等式f(x)≤2;
(Ⅱ)若對任意實數(shù)x∈[5,9],f(x)≤ax﹣1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=3sin(ωx+ 的部分圖象如圖所示,A,B兩點之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長度后所得函數(shù)圖象關(guān)于y軸對稱,則t的最小值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的圓心在直線3x+y﹣1=0上,且x軸,y軸被圓C截得的弦長分別為2 ,4 ,若圓心C位于第四象限
(1)求圓C的方程;
(2)設(shè)x軸被圓C截得的弦AB的中心為N,動點P在圓C內(nèi)且P的坐標滿足關(guān)系式(x﹣1)2﹣y2= ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
(1)若a∈R,a≠0,證明:函數(shù)f(x)=ax2+x﹣a必有局部對稱點;
(2)若函數(shù)f(x)=2x+b在區(qū)間[﹣1,1]內(nèi)有局部對稱點,求實數(shù)b的取值范圍;
(3)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對稱點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 經(jīng)過點P(2,1),且離心率為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設(shè)O為坐標原點,在橢圓短軸上有兩點MN滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點,如果經(jīng)過定點請求出定點的坐標,如果不經(jīng)過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+3在(﹣∞,1]上是減函數(shù),當x∈[a+1,1]時,f(x)的最大值與最小值之差為g(a),則g(a)的最小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實數(shù)m的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案