【題目】函數(shù)f(x)是定義在[-1,0)∪(0,1]上的奇函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=2x+ (x∈R).
(1)當(dāng)x∈(0,1]時(shí),求f(x)的解析式.
(2)判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論.
【答案】(1) f(x)=2x ;(2)詳見解析.
【解析】試題分析:(1) 當(dāng)0<x≤1時(shí),-1≤-x<0,f(-x)=-2x+=- f(x),解出f(x)即可;(2) 任取x1,x2∈(0,1]且x1<x2,通過計(jì)算得出f(x1)<f(x2), 所以f(x)在(0,1]上為增函數(shù).
試題解析:
(1)當(dāng)0<x≤1時(shí),-1≤-x<0,
f(-x)=-2x+,因?yàn)?/span>f(x)為奇函數(shù),f(-x)=-f(x) ∴f(x)=2x-.
(2)任取x1,x2∈(0,1]且x1<x2.
則f(x1)-f(x2)=2(x1-x2)+(-)
=2(x1-x2)+
=(x1-x2)(2+)
因?yàn)?/span>0<x1<x2<1,則x1-x2<0且2+>0.
從而f(x1)<f(x2).所以f(x)在(0,1]上為增函數(shù).
點(diǎn)睛: 本題考查利用函數(shù)的奇偶性求函數(shù)解析式,判斷并證明函數(shù)的單調(diào)性,屬于中檔題目.證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差: ,并將此式變形(要注意變形到能判斷整個(gè)式子符號為止);(3)定號:判斷
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出四種說法:
①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點(diǎn)的中心( ).
其中正確的說法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為了保護(hù)環(huán)境,實(shí)現(xiàn)城市綠化,某房地產(chǎn)公司要在拆遷地長方形ABCD處規(guī)劃一塊長方形地面HPGC,建造住宅小區(qū)公園,但不能越過文物保護(hù)區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設(shè)計(jì)才能使公園占地面積最大,求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若函數(shù)在處的切線方程為,求和的值;
(II)討論方程的解的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)某種產(chǎn)品時(shí)的能耗y與產(chǎn)品件數(shù)x之間的關(guān)系式為y=ax+.且當(dāng)x=2時(shí),y=100;當(dāng)x=7時(shí),y=35.且此產(chǎn)品生產(chǎn)件數(shù)不超過20件.
(1)寫出函數(shù)y關(guān)于x的解析式;
(2)用列表法表示此函數(shù),并畫出圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的右焦點(diǎn)與拋物線的焦點(diǎn)重合,點(diǎn)M在橢圓E上.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),直線與橢圓E交于A,B兩點(diǎn),若直線PA,PB關(guān)于x軸對稱,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國慶期間,某旅行社組團(tuán)去風(fēng)景區(qū)旅游,若旅行團(tuán)人數(shù)在 人或 人以下,每人需交費(fèi)用為 元;若旅行團(tuán)人數(shù)多于 人,則給予優(yōu)惠:每多 人,人均費(fèi)用減少 元,直到達(dá)到規(guī)定人數(shù) 人為止.旅行社需支付各種費(fèi)用共計(jì) 元.
Ⅰ 寫出每人需交費(fèi)用 關(guān)于人數(shù) 的函數(shù);
Ⅱ 旅行團(tuán)人數(shù)為多少時(shí),旅行社可獲得最大利潤?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com