1.函數(shù)f(x)=$\frac{1}{lgx}$+$\sqrt{2-x}$的定義域為{x|0<x≤2且x≠1}.

分析 根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.

解答 解:要使函數(shù)有意義,則$\left\{\begin{array}{l}{x>0}\\{lgx≠0}\\{2-x≥0}\end{array}\right.$,即$\left\{\begin{array}{l}{x>0}\\{x≠1}\\{x≤2}\end{array}\right.$,
得0<x≤2且x≠1,
即函數(shù)的定義域為{x|0<x≤2且x≠1},
故答案為:{x|0<x≤2且x≠1}

點評 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a<b<0,則以下結(jié)論正確的是( 。
A.a2<ab<b2B.a2<b2<abC.a2>ab>b2D.a2>b2>ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{{{{(x-a)}^2}}}{lnx}$(其中a為常數(shù)).
(Ⅰ)當(dāng)a=0時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)a≥$\frac{1}{2}$且函數(shù)f(x)有3個極值點,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知正三棱柱ABC-A1B1C1所有的棱長均為2,D是CC1的中點.
(1)求多面體ABD-A1B1C1的體積.
(2)求直線CC1與平面ABD所成角的大。
(3)(理科)求二面角A-BD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某教育機構(gòu)為了解我省廣大師生對新高考改革方案的看法,對某市部分學(xué)校的600名師生進行調(diào)查,統(tǒng)計結(jié)果如下:
贊成改革不贊成改革無所謂
教師人數(shù)120y30
學(xué)生人數(shù)xz110
在這600名師生中隨機抽取1人,這個人“贊成改革”且是學(xué)生的概率為0.4,已知y=$\frac{2}{3}$z
(1)現(xiàn)從這600名師生中用分層抽樣的方法抽取60人進行問卷調(diào)查,則應(yīng)抽取“不贊成改革”的教師和學(xué)生的人數(shù)各是多少?
(2)在(1)中抽取的“不贊成改革”的教師中(甲在其中),隨機選出2人進行座談,求教師甲被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,且短軸長為2.
(1)求橢圓的方程;
(2)若直線l:y=x+$\sqrt{2}$與橢圓交于A,B兩點,O為坐標(biāo)原點,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果不等式(m+1)x2+2(m+1)x+1>0對任意實數(shù)x恒成立,則實數(shù)m的取值范圍是( 。
A.[-1,0)B.(-1,0)C.(-1,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=x3-3x+2的極大值點是( 。
A.x=±1B.x=1C.x=0D.x=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.不等式x2-ax-6a2<0(a<0)的解集為( 。
A.(-∞,-2a)∪(3a,+∞)B.(-∞,3a)∪(-2a,+∞)C.(-2a,3a)D.(3a,-2a)

查看答案和解析>>

同步練習(xí)冊答案