【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個(gè)不同的零點(diǎn),求的取值范圍.
【答案】(1)見(jiàn)解析(2)
【解析】
(1)求出函數(shù)的定義域以及導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,分類討論,,,,可求得的單調(diào)性
(2)由(1)求得在,,,時(shí),函數(shù)的單調(diào)區(qū)間,討論出零點(diǎn)的個(gè)數(shù),從而求得實(shí)數(shù)的取值范圍。
解析:(1)
①,,,,單調(diào)遞增;,,單調(diào)遞減
②,或,當(dāng),,單調(diào)遞減;,,單調(diào)遞增;,,單調(diào)遞減
③,,在單調(diào)遞減
④,或,當(dāng),,單調(diào)遞減;
,,單調(diào)遞增;
,,單調(diào)遞減
(2)由(1)得當(dāng)時(shí),在定義域上只有一個(gè)零點(diǎn)
,由(1)可得,要使有兩個(gè)零點(diǎn),則
∴
下證有兩個(gè)零點(diǎn)
取,,滿足,故在有且只有一個(gè)零點(diǎn)
,滿足,故在有且只有一個(gè)零點(diǎn)
當(dāng)時(shí),由(1)可得,,故在無(wú)零點(diǎn),
又因?yàn)?/span>在單調(diào)遞減,
∴在至多一個(gè)零點(diǎn),不滿足條件
當(dāng)時(shí),,故在上無(wú)零點(diǎn),
又因?yàn)?/span>在單調(diào)遞減,∴在至多一個(gè)零點(diǎn),不滿足條件
∴滿足條件的取值范圍
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲,乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.
甲每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 | 4 |
對(duì)應(yīng)的天數(shù)/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 |
對(duì)應(yīng)的天數(shù)/天 | 30 | 25 | 25 | 20 |
(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤(rùn)記為(單位:元),寫(xiě)出與的函數(shù)關(guān)系式;
(2)如果將統(tǒng)計(jì)的100天中產(chǎn)生次品量的頻率作為概率,記表示甲、乙兩名工人1天中各自日利潤(rùn)不少于1950元的人數(shù)之和,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,、是兩個(gè)垃圾中轉(zhuǎn)站,在的正東方向千米處,的南面為居民生活區(qū).為了妥善處理生活垃圾,政府決定在的北面建一個(gè)垃圾發(fā)電廠.垃圾發(fā)電廠的選址擬滿足以下兩個(gè)要求(、、可看成三個(gè)點(diǎn)):①垃圾發(fā)電廠到兩個(gè)垃圾中轉(zhuǎn)站的距離與它們每天集中的生活垃圾量成反比,比例系數(shù)相同;②垃圾發(fā)電廠應(yīng)盡量遠(yuǎn)離居民區(qū)(這里參考的指標(biāo)是點(diǎn)到直線的距離要盡可能大).現(xiàn)估測(cè)得、兩個(gè)中轉(zhuǎn)站每天集中的生活垃圾量分別約為噸和噸.設(shè).
(1)求(用的表達(dá)式表示);
(2)垃圾發(fā)電廠該如何選址才能同時(shí)滿足上述要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次考試后,對(duì)全班同學(xué)的數(shù)學(xué)成績(jī)進(jìn)行整理,得到表:
分?jǐn)?shù)段 | ||||
人數(shù) | 5 | 15 | 20 | 10 |
將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計(jì)出本次考試成績(jī)的中位數(shù)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)為、,是與的等差中項(xiàng),其中、、都是正數(shù),過(guò)點(diǎn)和的直線與原點(diǎn)的距離為.
(1)求橢圓的方程;
(2)點(diǎn)是橢圓上一動(dòng)點(diǎn),定點(diǎn),求△面積的最大值;
(3)已知定點(diǎn),直線與橢圓交于、相異兩點(diǎn).證明:對(duì)任意的,都存在實(shí)數(shù),使得以線段為直徑的圓過(guò)點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在點(diǎn)處的切線平行于直線,求切點(diǎn)的坐標(biāo)及此切線方程;
(2)求證:當(dāng)時(shí),;(其中)
(3)確定非負(fù)實(shí)數(shù)的取值范圍,使得,成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的極值;
(2)對(duì),不等式都成立,求整數(shù)k的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為正三角形,分別是的中點(diǎn),,則球的體積為_________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求函數(shù)a的取值范圍;
(2)記函數(shù)的兩個(gè)極值點(diǎn)為,,且,證明對(duì)任意實(shí)數(shù),都有不等式成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com