分析 由題意可知:n=1,a1=S1=1+1=2,當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+n-(n-1)2+(n-1)=2n,則an=2n(n∈n*),$\underset{lim}{n→∞}$$\frac{n{a}_{n}}{{S}_{n}}$=$\underset{lim}{n→∞}$$\frac{2{n}^{2}}{n(n+1)}$=2$\underset{lim}{n→∞}$$\frac{1}{1+\frac{1}{n}}$=2.
解答 解:由Sn=n2+n(n∈n*),
當(dāng)n=1,a1=S1=1+1=2,
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+n-(n-1)2+(n-1)=2n,
當(dāng)n=1時(shí),a1=2×1=2,成立,
∵an=2n(n∈n*),
∴$\underset{lim}{n→∞}$$\frac{n{a}_{n}}{{S}_{n}}$=$\underset{lim}{n→∞}$$\frac{2{n}^{2}}{n(n+1)}$=2$\underset{lim}{n→∞}$$\frac{1}{1+\frac{1}{n}}$=2,
∴$\underset{lim}{n→∞}$$\frac{n{a}_{n}}{{S}_{n}}$=2,
故答案為:2.
點(diǎn)評(píng) 本題考查求數(shù)列通項(xiàng)公式的方法,考查數(shù)列與極限的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,$\frac{3}{4}$] | C. | (-∞,1) | D. | [$\frac{3}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (-2,1) | C. | (1,4) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com