已知函數(shù)
(1)當(dāng)a=1時(shí),求曲線(xiàn)在點(diǎn)(3,)處的切線(xiàn)方程
(2)求函數(shù)的單調(diào)遞增區(qū)間
⑴; ⑵見(jiàn)解析
解析試題分析:⑴求曲線(xiàn)在某一點(diǎn)的切線(xiàn)方程,要求出斜率,則要先求出導(dǎo)函數(shù),有斜率再求切線(xiàn)方程時(shí)用斜截式就可以直接求出;⑵一般求函數(shù)的單調(diào)區(qū)間都會(huì)和函數(shù)的導(dǎo)函數(shù)相聯(lián)系,在本題中要注意還有參數(shù),所以在對(duì)導(dǎo)函數(shù)進(jìn)行討論時(shí)要對(duì)的取值進(jìn)行討論,要求函數(shù)的單調(diào)增區(qū)間即是求其導(dǎo)函數(shù)大于0時(shí)對(duì)應(yīng)的的取值集合,關(guān)鍵是利用分類(lèi)討論的思想對(duì)進(jìn)行討論,注意不要漏掉任何一種可能的情況.
試題解析:(1)由已知得,其中,
,,∴,
切線(xiàn)方程:; 4分
(2),
令, .6分
當(dāng),時(shí),,∴,∴單調(diào)遞增, .7分
當(dāng),若,則,
當(dāng),,,單調(diào)遞增,
當(dāng),在 上無(wú)遞增區(qū)間,
當(dāng)單調(diào)遞增, .11分
當(dāng)時(shí),時(shí),單調(diào)遞增, .12分
考點(diǎn):利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)的導(dǎo)函數(shù)的求法,直線(xiàn)的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)證明 當(dāng),時(shí),;
(2)討論在定義域內(nèi)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(理)已知函數(shù)f(x)= -lnx,x∈[1,3].
(Ⅰ)求f(x)的最大值與最小值;
(Ⅱ)若f(x)<4-At對(duì)于任意的x∈[1,3],t∈[0,2]恒成立,求實(shí)數(shù)A的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題14分) 已知函數(shù),若
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)當(dāng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a>0,函數(shù).
(1)若,求函數(shù)的極值,
(2)是否存在實(shí)數(shù),使得成立?若存在,求出實(shí)數(shù)的取值集合;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義在上的函數(shù)同時(shí)滿(mǎn)足以下條件:①函數(shù)在上是減函數(shù),在上是增函數(shù);②是偶函數(shù);③函數(shù)在處的切線(xiàn)與直線(xiàn)垂直.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè),若存在使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直,導(dǎo)函數(shù) 的最小值為.
(1)求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,函數(shù)
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程; (2)當(dāng)時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知函數(shù)f(x)=ex+ax-1(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)a=1時(shí),求過(guò)點(diǎn)(1,f(1))處的切線(xiàn)與坐標(biāo)軸圍成的三角形的面積;
(II)若f(x)x2在(0,1 )上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com