已知,函數(shù)
(1)求曲線在點(diǎn)處的切線方程; (2)當(dāng)時(shí),求的最大值.
(1),(2)
解析試題分析:(1)導(dǎo)數(shù)幾何意義即切線的斜率;(2)求導(dǎo)數(shù),列表判斷單調(diào)性,分情況討論.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù),其中且.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
如圖,某自來(lái)水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排,在路南側(cè)沿直線排,現(xiàn)要在矩形區(qū)域內(nèi)沿直線將與接通.已知,,公路兩側(cè)排管費(fèi)用為每米1萬(wàn)元,穿過(guò)公路的部分的排管費(fèi)用為每米2萬(wàn)元,設(shè)與所成的小于的角為.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)f(x)=x-ax+(a-1),.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)的導(dǎo)函數(shù)是,在處取得極值,且.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
試題解析:(Ⅰ)由已知得:,且
,所以所求切線方程為:,
即為:;
(Ⅱ)由已知得到:,其中,當(dāng)時(shí),,
(1)當(dāng)時(shí),,所以在上遞減,所以,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/72/c/1tmvg4.png" style="vertical-align:middle;" />;
(2)當(dāng),即時(shí),恒成立,所以在上遞增,所以
,因?yàn)?
;
(3)當(dāng),即時(shí),
,且,即2 + 0 - 0 +
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)當(dāng)a=1時(shí),求曲線在點(diǎn)(3,)處的切線方程
(2)求函數(shù)的單調(diào)遞增區(qū)間
(I)求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時(shí),若存在,使成立,求實(shí)數(shù)的取值范圍.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間[0,2]上恒有,求的取值范圍.
(Ⅰ)求矩形區(qū)域內(nèi)的排管費(fèi)用關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)求排管的最小費(fèi)用及相應(yīng)的角.
(1)討論函數(shù)的單調(diào)性;(2)若,設(shè),
(。┣笞Cg(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對(duì)任意x,x,xx,有.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對(duì)任意的總有成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點(diǎn).當(dāng)時(shí),求直線OM斜率的最小值,據(jù)此判斷與的大小關(guān)系,并說(shuō)明理由.
版權(quán)聲明:本站所有文章,圖片來(lái)源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無(wú)意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來(lái)函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)