13.已知數(shù)列{an}是公差為d的等差數(shù)列,且a1+a3+a5=105,a2+a4+a6=99,則d=-2,當(dāng)數(shù)列{an}的前n項(xiàng)和Sn取得最大值時(shí),n=20.

分析 先確定數(shù)列的通項(xiàng),再確定數(shù)列的正數(shù)項(xiàng),即可求得Sn取得最大值.

解答 解:∵a1+a3+a5=105,a2+a4+a6=99,
∴3a3=105,3a4=99,∴a3=35,a4=33
∴公差d=-2
∴an=35+(n-3)×(-2)=41-2n
∴0<n≤20時(shí),an>0;
n≥21時(shí),an<0
∴Sn取得最大值時(shí)的n=20
故答案為:-2,20.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)與求和,考查學(xué)生的計(jì)算能力,確定數(shù)列的通項(xiàng)是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a2+b2=c2+$\sqrt{3}$ab.
(Ⅰ)求角C的值;
(Ⅱ)若b=2,c=1,求△ABC的面積;
(Ⅲ)若△ABC為銳角三角形,且c=1,求$\sqrt{3}$a-b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x≤1}\\{lnx,x>1}\end{array}\right.$,若|f(x)|+a≥ax,則a的取值范圍是(  )
A.[-2,0]B.[-2,1]C.(-∞,-2]D.(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和Sn=2n2-3,求:
(1)第二項(xiàng)a2
(2)通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.定義在(0,+∞)上的函數(shù)f(x)=a(x+$\frac{1}{x}$)-|x-$\frac{1}{x}}$|(a∈R).
(Ⅰ)當(dāng)a=$\frac{1}{2}$時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥$\frac{1}{2}$x對(duì)任意的x>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.(ax+2)n展開式中所有項(xiàng)的二項(xiàng)式系數(shù)和為32,含x2項(xiàng)的系數(shù)為320,則a=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)已知tanα=$\frac{1}{3}$,求2sin2α+3sinαcosα+4cos2α的值;
(2)已知a>0,ω>0,函數(shù)f(x)=asinωx+$\sqrt{3}$cosωx的最小正周期為π,對(duì)于任意的x∈R,f(x)≤f($\frac{π}{12}$)恒成立,求f(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是72cm2,體積是32cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.對(duì)于函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(x2-2ax+4)
(1)若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(3)若f(x)的值域?yàn)椋?∞,-1],求實(shí)數(shù)a的值;
(4)若f(x)在(-∞,1]上遞增,求數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案