15.已知命題$p:?{x_0}∈R,{2^{{x_0}-1}}≤1$,則命題?p為(  )
A.$?{x_0}∈R,{2^{{x_0}-1}}≥1$B.$?{x_0}∈R,{2^{{x_0}-1}}>1$
C.?x∈R,2x-1≤1D.?x∈R,2x-1>1

分析 根據(jù)特稱命題的否定是全稱命題進(jìn)行判斷即可.

解答 解:命題是特稱命題,則命題的否定是全稱命題,
則?p為:?x∈R,2x-1>1,
故選:D

點(diǎn)評 本題主要考查含有量詞的命題的否定,根據(jù)特稱命題的否定是全稱命題是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知一次函數(shù)f(x)滿足f(2)=1,f(3)=-5,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|2x+a|+|2x-b|(a>0,b>0).
(Ⅰ)若a=1,b=2,求不等式f(x)>5的解集;
(Ⅱ)若f(x)的最小值為1,求$\frac{a^2}+\frac{a}{b^2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)z=$\frac{1+i}{2+i}$(其中i為虛數(shù)單位),則復(fù)數(shù)$\overline z$在坐標(biāo)平面內(nèi)對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax+b(a>0且a≠1)的圖象經(jīng)過點(diǎn)(2,0),(0,-2).
(1)求a和b的值;
(2)求當(dāng)x∈[2,4]時,函數(shù)y=f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,正方體ABCD-A′B′C′D′的棱長為a,點(diǎn)P是棱AD上一點(diǎn),且$AP=\frac{a}{3}$,過三點(diǎn)B′,D′,P的平面交底面ABCD于PQ,Q在棱AB上,則PQ=$\frac{\sqrt{2}a}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}的前n項和為Sn,a1=1,且滿足anan+1=2Sn,數(shù)列{bn}滿足b1=16,bn+1-bn=2n,則數(shù)列$\{\frac{b_n}{a_n}\}$中第4項最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列不等式一定成立的是( 。
A.lg(x2+$\frac{1}{4}$)>lgx(x>0)B.x2+1≥2|x|(x∈R)
C.sin x+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z)D.$\frac{1}{{x}^{2}+1}$>1(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)數(shù)列{an}滿足:a1=2,an+1=1-$\frac{1}{a_n}$,記數(shù)列{an}的前n項之積為Πn,則Π2014的值為-2.

查看答案和解析>>

同步練習(xí)冊答案