10.已知函數(shù)f(x)=$\frac{x-1}{{e}^{x-1}}$(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)已知函數(shù)y=g(x)對任意x滿足g(x)=f(4-x),證明當(dāng)x>2時,f(x)>g(x);
(3)如果x1≠x2,且f(x1)=f(x2),證明x1+x2>4.

分析 (1)利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系求得即可;
(2)構(gòu)造函數(shù)h(x)=f(x)-g(x),利用導(dǎo)數(shù)判斷且單調(diào)性得h(x)在(2,+∞)上是增函數(shù),故h(x)>h(2)=0,即可得證;
(3)利用(1)(2)的結(jié)論即可得出結(jié)論.

解答 解:(1)f(x)=$\frac{x-1}{{e}^{x-1}}$(x∈R)
∴f'(x)=$\frac{2-x}{{e}^{x-1}}$,
∴x<2時,f'(x)>0,f(x)單調(diào)遞增;x>2時f'(x)<0,f(x)單調(diào)遞減.
∴f(x)的極大值=f(2)=$\frac{1}{e}$.
(2)∴g(x)=f(4-x),
∴g(x)=$\frac{3-x}{{e}^{3-x}}$,
設(shè)h(x)=f(x)-g(x)=$\frac{x-1}{{e}^{x-1}}$-$\frac{3-x}{{e}^{3-x}}$,
∴h'(x)=f′(x)-g′(x)=$\frac{2-x}{{e}^{x-1}}$-$\frac{2-x}{{e}^{3-x}}$=$\frac{(2-x)({e}^{3-x}-{e}^{x-1})}{{e}^{2}}$
當(dāng)x>2時,h'(x)>0,h(x)單調(diào)遞增,
∴h(x)>h(2)=0,
∴f(x)>g(x).
(3)由(1),不妨設(shè)x1<2<x2,則4-x2<2,
∴由(2)得f(x1)=f(x2)>f(4-x2),
又由(1)得,x<2時,f(x)單調(diào)遞增,
∴x1>4-x2
∴x1+x2>4.

點評 本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間及極值最值的知識,以及通過構(gòu)造函數(shù)證明不等式成立問題,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系中,點P($\frac{1}{2}$,$\frac{2}{3}$)在角α的終邊上,點Q($\frac{1}{3}$,-1)在角β的終邊上,點M(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$)在角γ終邊上.
(1)求sinα,cosβ,tanγ的值;
(2)求sin(α+2β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列四組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=log22x,g(x)=$\root{3}{{x}^{3}}$B.f(x)=$\sqrt{{x}^{2}}$,g(x)=x
C.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$D.f(x)=lnx2,g(x)=2lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在四棱錐中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD,G、H分別為AD、BC中點.證明:
(1)AB⊥平面VAD;
(2)平面VGH⊥平面VBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2x取極小值時,x的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知曲線y=-$\frac{1}{3}$x3+2與曲線y=4x2-1在x=x0處的切線互相垂直,則x0的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓:$\frac{x^2}{9}+\frac{y^2}{4}=1$,左右焦點分別為F1,F(xiàn)2,過F1的直線l交橢圓于A,B 兩點,則|$\overrightarrow{B{F}_{2}}$|+|$\overrightarrow{A{F}_{2}}$|的最大值為$\frac{28}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的部分圖象如圖,且過點$A(\frac{7π}{12},0),B(0,-1)$,則以下結(jié)論不正確的是( 。
A.f(x)的圖象關(guān)于直線$x=-\frac{π}{6}$ 對稱B.f(x)的圖象關(guān)于點$(\frac{π}{12},0)$對稱
C.f(x) 在$[-\frac{π}{2},-\frac{π}{3}]$ 上是增函數(shù)D.f(x) 在$[\frac{4π}{3},\frac{3π}{2}]$ 上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.定義在R上的奇函數(shù)f(x),對任意a,b∈R,a+b≠0,都有$\frac{f(a)+f(b)}{a+b}$>0.
(1)試證明f(x)為R上的增函數(shù);
(2)若不等式f(kx2-6)+f(k-2x)<0在k∈[-1,1]上恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案