11.若曲線f(x)=x(x-m)2在x=1處取得極小值,則m的值是1.

分析 通過對函數(shù)f(x)求導,根據(jù)函數(shù)在x=1處有極值,可知f'(1)=0,解得m的值,再驗證可得結(jié)論.

解答 解:求導函數(shù)可得f'(x)=3x2-4mx+m2,
∴f'(1)=3-4m+m2=0,解得m=1,或m=3,
當m=1時,f'(x)=3x2-4x+1=(3x-1)(x-1),函數(shù)在x=1處取到極小值,符合題意;
當m=3時,f'(x)=3x2-12x+9=3(x-1)(x-3),函數(shù)在x=1處取得極大值,不符合題意,
∴m=1,
故答案為:1.

點評 本題考查了函數(shù)的極值問題,考查學生的計算能力,正確理解極值是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.用數(shù)學歸納法證明(x+1)n+1+(x+2)2n-1(n∈N*)能被x2+3x+3 整除.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知sin(π+α)=-$\frac{1}{2}$,求tan($\frac{π}{2}$-α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知甲、乙、丙等6人.
(1)這6人同時參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的去法?
(2)這6人同時參加6項不同的活動,每項活動限1人參加,求甲不參加第一項活動且乙不參加第三項活動的概率.
(3)這6人同時參加4項不同的活動,求每項活動至少有1人參加的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖所示,四棱錐P-ABCD中,PA=PB=PC=PD,AB=a,O為底面正方形的中心,側(cè)棱PA與底面ABCD所成的角的正切值為$\frac{{\sqrt{6}}}{2}$.
(1)求側(cè)面PAD與底面ABCD所成的二面角的大;
(2)若E是PB的中點,求異面直線PD與AE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知半徑為5的圓的圓心在x軸上,圓心的橫坐標是整數(shù),且圓與直線4x+3y-29=0相切,設直線ax-y+5=0(a
>0)與圓相交于A,B兩點.
(1)求圓的標準方程;
(2)求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a,使得線AB的垂直平分線l過點P(-2,4)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知四邊形ABCD為菱形,且∠A=60°,E,F(xiàn)分別為AB,AD的中點,現(xiàn)將四邊形EBCD沿DE折起至EBHD.

(Ⅰ)求證:EF∥平面ABH;
(Ⅱ)若平面EBHD⊥平面ADE,求二面角B-AH-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=x2e-x,則f(x)的極大值為$\frac{4}{{e}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知長方體ABCD-A1B1C1D1的所有頂點都在球O的球面上,AB=AD=1,AA1=2,則球O的球面面積為(  )
A.B.C.D.24π

查看答案和解析>>

同步練習冊答案