分析 通過對函數(shù)f(x)求導,根據(jù)函數(shù)在x=1處有極值,可知f'(1)=0,解得m的值,再驗證可得結(jié)論.
解答 解:求導函數(shù)可得f'(x)=3x2-4mx+m2,
∴f'(1)=3-4m+m2=0,解得m=1,或m=3,
當m=1時,f'(x)=3x2-4x+1=(3x-1)(x-1),函數(shù)在x=1處取到極小值,符合題意;
當m=3時,f'(x)=3x2-12x+9=3(x-1)(x-3),函數(shù)在x=1處取得極大值,不符合題意,
∴m=1,
故答案為:1.
點評 本題考查了函數(shù)的極值問題,考查學生的計算能力,正確理解極值是關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2π | B. | 4π | C. | 6π | D. | 24π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com