已知直線l⊥平面α,直線m?平面β,有下面四個(gè)命題:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.

其中正確的命題(  )

A.①② B.②④ C.①③ D.③④

 

C

【解析】對(duì)于①,由l⊥α,α∥β⇒l⊥β,又因?yàn)橹本m?平面β,所以l⊥m,故①正確,同理可得③正確;②與④不正確,故選C.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科三角函數(shù)恒等變形(解析版) 題型:選擇題

已知,則tan為(  )

A.

B.

C. 2

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(六)(解析版) 題型:填空題

袋中有3個(gè)黑球,1個(gè)紅球.從中任取2個(gè),取到一個(gè)黑球得0分,取到一個(gè)紅球得2分,則所得分?jǐn)?shù)ξ的數(shù)學(xué)期望E(ξ)=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:解答題

已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3.

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)數(shù)列{cn}滿足cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:選擇題

已知拋物線y2=2px(p>0)上一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)的距離為5,雙曲線-y2=1的左頂點(diǎn)為A,若雙曲線的一條漸近線與直線AM平行,則實(shí)數(shù)a的值為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:選擇題

若集合A={x|x≥0},且A∩B=B,則集合B可能是(  )

A.{1,2} B.{x|x≤1}

C.{-1,0,1} D.R

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(二)(解析版) 題型:填空題

①存在α∈(0,)使sin α+cos α=;

②存在區(qū)間(a,b)使y=cos x為減函數(shù)且sin x<0;

③y=tan x在其定義域內(nèi)為增函數(shù);

④y=cos 2x+sin(-x)既有最大、最小值,又是偶函數(shù);

⑤y=|sin 2x+|的最小正周期為π.

以上命題錯(cuò)誤的為_(kāi)_______(填序號(hào)).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:解答題

已知函數(shù)f(x)=-2x+4,令Sn=f()+f()+f()+…+f()+f(1).

(1)求Sn;

(2)設(shè)bn=(a∈R)且bn<bn+1對(duì)所有正整數(shù)n恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:選擇題

已知集合A={-1,1},B={x|mx=1},且A∪B=A,則m的值為 (  )

A.1或-1或0 B.-1

C.1或-1 D.0

 

查看答案和解析>>

同步練習(xí)冊(cè)答案