10.已知函數(shù)f(x)=lnx-$\frac{a}{x}$.
(1)若a>0,證明f(x)在定義域內(nèi)是增函數(shù);
(2)若f(x)在[1,e]上的最小值為$\frac{3}{2}$,求a的值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的符號,得到函數(shù)的單調(diào)性即可;
(2)由f(x)=lnx-$\frac{a}{x}$,知f′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$,令f′(x)=0得x=-a,以-a在[1,e]內(nèi),左,右分為三類來討論,函數(shù)在[1,e]上的單調(diào)性,進而求出最值,求出a的值,由范圍來取舍,得出a的值.

解答 解:(1)f(x)的定義域是(0,+∞),
f′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$=$\frac{x+a}{{x}^{2}}$,
由a>0,得f′(x)>0,
故f(x)在(0,+∞)遞增;
(2)∵f(x)=lnx-$\frac{a}{x}$,
∴f′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$,
由f′(x)=0,得x=-a.
令f′(x)<0得x<-a,令f′(x)>0,得x>-a,
①-a≤1,即a≥-1時,f(x)在[1,e]上單增,
f(x)最小值=f(1)=-a=$\frac{3}{2}$,a=-$\frac{3}{2}$<-1,不符題意,舍;
②-a≥e,即a≤-e時,f(x)在[1,e]上單減,
f(x)最小值=f(e)=1-$\frac{a}{e}$=$\frac{3}{2}$,a=-$\frac{e}{2}$>-e,不符題意,舍;
③1<-a<e,即-e<a<-1時,f(x)在[1,-a]上單減,在[-a,e]上單增,
f(x)最小值=f(-a)=ln(-a)+1=$\frac{3}{2}$,a=-$\sqrt{e}$滿足;
綜上a=-$\sqrt{e}$.

點評 本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)最值的應(yīng)用,會利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值,要確定函數(shù)的單調(diào)性,注意分類討論思想的應(yīng)用,掌握不等式恒成立時所取的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點P在橢圓x2+$\frac{y^2}{4}$=1上,求點P到直線l:x+y=4的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,∠C=90°,0°<A<45°,則下列各式中,正確的是( 。
A.sinA>sinBB.tanA>tanBC.cosA<sinAD.cosB<sinB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2-3x,函數(shù)g(x)的圖象在點(1,g(1))處的切線平行于x軸.
(1)求a的值;
(2)求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)f(x)滿足?x1,x2∈R都有f(x1+x2)=f(x1)+f(x2)-3,當(dāng)x>0時,f(x)>3,且f(3)=6
(1)求f(1)的值;
(2)求證:f(x)是R上的增函數(shù);
(3)解不等式f(a2-3a-9)<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計算:
(1)(1-i)(1+i)2-($\frac{2}{5}$-$\frac{1}{5}$i)+$\frac{1+2i}{1-2i}$-4i;
(2)$\frac{(-1+\sqrt{3}i)^{3}}{(1+i)^{6}}$-$\frac{(2+i)^{2}}{4-3i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若向量$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow a$|=$\sqrt{2}$,|$\overrightarrow b$|=2,且($\overrightarrow a$-$\overrightarrow b$)⊥$\overrightarrow a$,則|$\overrightarrow a$+$\overrightarrow b$|等于( 。
A.3B.$2\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.奇函數(shù)f(x)定義域為(-π,0)∪(0,π),其導(dǎo)函數(shù)為f′(x).當(dāng)0<x<π時,有f′(x)sinx-f(x)cosx<0,則關(guān)于x的不等式f(x)<$\sqrt{2}$f($\frac{π}{4}$)sinx的解集是$(-\frac{π}{4},0)∪(\frac{π}{4},π)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲線y=x3-3x和直線y=x所圍成圖形的面積是( 。
A.4B.8C.9D.10

查看答案和解析>>

同步練習(xí)冊答案