分析 (1)求出函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的符號,得到函數(shù)的單調(diào)性即可;
(2)由f(x)=lnx-$\frac{a}{x}$,知f′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$,令f′(x)=0得x=-a,以-a在[1,e]內(nèi),左,右分為三類來討論,函數(shù)在[1,e]上的單調(diào)性,進而求出最值,求出a的值,由范圍來取舍,得出a的值.
解答 解:(1)f(x)的定義域是(0,+∞),
f′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$=$\frac{x+a}{{x}^{2}}$,
由a>0,得f′(x)>0,
故f(x)在(0,+∞)遞增;
(2)∵f(x)=lnx-$\frac{a}{x}$,
∴f′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$,
由f′(x)=0,得x=-a.
令f′(x)<0得x<-a,令f′(x)>0,得x>-a,
①-a≤1,即a≥-1時,f(x)在[1,e]上單增,
f(x)最小值=f(1)=-a=$\frac{3}{2}$,a=-$\frac{3}{2}$<-1,不符題意,舍;
②-a≥e,即a≤-e時,f(x)在[1,e]上單減,
f(x)最小值=f(e)=1-$\frac{a}{e}$=$\frac{3}{2}$,a=-$\frac{e}{2}$>-e,不符題意,舍;
③1<-a<e,即-e<a<-1時,f(x)在[1,-a]上單減,在[-a,e]上單增,
f(x)最小值=f(-a)=ln(-a)+1=$\frac{3}{2}$,a=-$\sqrt{e}$滿足;
綜上a=-$\sqrt{e}$.
點評 本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)最值的應(yīng)用,會利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值,要確定函數(shù)的單調(diào)性,注意分類討論思想的應(yīng)用,掌握不等式恒成立時所取的條件.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sinA>sinB | B. | tanA>tanB | C. | cosA<sinA | D. | cosB<sinB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $2\sqrt{2}$ | C. | 10 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com