11.已知命題p:若α為第一象限角,β為第二象限角,則α<β;命題q:在等比數(shù)列{an}中,若a1<a2,則數(shù)列{an}為遞減數(shù)列,下列命題為真命題的是( 。
A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∨q

分析 分別判定命題p,q的真假,再利用復(fù)合命題真假的判定方法即可得出.

解答 解:命題p:若α為第一象限角,β為第二象限角,則α<β,是假命題,例如:α=2π+$\frac{π}{6}$,β=$\frac{2π}{3}$;
命題q:在等比數(shù)列{an}中,若a1<a2,則數(shù)列{an}為遞減數(shù)列,是假命題,例如:1,-1,1,-1,滿足條件,但是不是遞減數(shù)列.
下列命題為真命題的是(¬p)∧(¬q),
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)合命題真假的判定方法、象限角、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.某微信群中甲、乙、丙、丁、戊五名成員同時(shí)搶4個(gè)紅包,每人最多搶一個(gè)紅包,且紅包全被搶光,4個(gè)紅包中有兩個(gè)2元,兩個(gè)3元(紅包中金額相同視為相同的紅包),則甲乙兩人都搶到紅包的情況有18種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在直角坐標(biāo)系xOy中,M(-2,0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,A(ρ,θ)為曲線C上一點(diǎn),B(ρ,θ+$\frac{π}{3}$),且|BM|=1.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)求|OA|2+|MA|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1-x)5(3+2x)9=a0(x+1)14+a1(x+1)13+…+a13(x+1)+a14,求:
(1)a0+a1+…+a14的值;
(2)a1+a3+…a13的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.隨著人口老齡化的到來(lái),我國(guó)的勞動(dòng)力人口在不斷減少,“延遲退休”已經(jīng)成為人們?cè)絹?lái)越關(guān)注的話題,為了了解公眾對(duì)“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組對(duì)公務(wù)員和教師各抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
  公務(wù)員 教師 合計(jì)
 同意延遲退休 40 n 70
 不同意延遲退休 m 20 p
 合計(jì) 50 50 100
附:

(Ⅰ)求上表中m,n,p的值,并問(wèn)是否有95%的把握認(rèn)為“是否同意延遲退休與不同的職業(yè)有關(guān)”.
(Ⅱ)現(xiàn)用分層抽樣方法(按同意和不同意分二層)從調(diào)查的兩個(gè)職業(yè)人群中各抽取五人,然后從每個(gè)職業(yè)的五人中各抽取兩人,將這四人中的同意延遲退休的人數(shù)記為x,求x的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.用“五點(diǎn)法”作出函數(shù)y=-sinx,x∈[0,2π]的簡(jiǎn)圖.
(1)觀察圖象,寫出滿足條件的x的區(qū)間:①sinx>0;②sinx≤0.
(2)直線y=$\frac{1}{2}$與y=-sinx.x∈[0,2π]的圖象有幾個(gè)交點(diǎn)?并求出坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖1所示,在矩形ABCD中,AB=2,AE=$\frac{1}{4}$AB.若將矩形ABCD沿對(duì)角線AC折起一部分后(如圖2),D點(diǎn)在平面ABC的正投影恰好能與E重合.
(Ⅰ)求線段AD的長(zhǎng);
(Ⅱ)線段CD(包括端點(diǎn))上是否存在一點(diǎn)F,使得二面角E-BF-D的大小為30°,若存在,求$\frac{DF}{CD}$的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若一等差數(shù)列共3n項(xiàng),前n項(xiàng)和為A,中間n項(xiàng)和為B,后n項(xiàng)和為C,M=B2-AC,N=($\frac{A-C}{2}$)2,則M和N的大小關(guān)系為M=N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow$=(cosx,-1).
(1)當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時(shí),求$\frac{sin2x+2si{n}^{2}x}{1-tanx}$的值;
(2)設(shè)函數(shù)f(x)=2($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$,求當(dāng)0≤x≤$\frac{π}{2}$時(shí),函數(shù)f(x)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案