1.某微信群中甲、乙、丙、丁、戊五名成員同時搶4個紅包,每人最多搶一個紅包,且紅包全被搶光,4個紅包中有兩個2元,兩個3元(紅包中金額相同視為相同的紅包),則甲乙兩人都搶到紅包的情況有18種.(用數(shù)字作答)

分析 根據(jù)紅包的性質(zhì)進(jìn)行分類,若甲乙搶的是一個2和一個3元的,若兩個和2元或兩個3元,根據(jù)分類計數(shù)原理可得.

解答 解:若甲乙搶的是一個2和一個3元的,剩下2個紅包,被剩下的3人中的2個人搶走,有A22A32=12種,
若甲乙搶的是兩個和2元或兩個3元的,剩下2個紅包,被剩下的3人中的2個人搶走,有A22C32=6種,
根據(jù)分類計數(shù)原理可得,共有12+6=18種,
故答案為:18.

點評 本題考查了分類計數(shù)原理,關(guān)鍵是分類,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若sin2α<0且tanαcosα>0,則角α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知(1-2x)9=a0+a1x+a2x2+…+a9x9,則a0+a1+a2+…+a9=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知A、B、C、D四點的坐標(biāo)分別是A(3,0),B(0,3),C(sinα,cosα),D(1,1).
(Ⅰ)若|AC|=|BC|,求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值;
(Ⅱ)若|CD|2=$\frac{5}{3}$,求$\frac{si{n}^{2}α+sinαcosα}{1+tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系內(nèi),若角α的終邊經(jīng)過點P(1,-2),則sin2α=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知集合U={1,2,3,4},集合A={1,3,4},B={2,4},那么集合(∁UA)∩B={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.等比數(shù)列{an}中,a2=8,a5=64,則a3=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,△ABC為圓的內(nèi)接三角形,∠ABC的平分線BF交圓于點E,過點B作圓的切線交AC的延長線于點D
(Ⅰ)證明:BD=DF;
(Ⅱ)若∠D=∠EBC,求證:$\frac{A{B}^{2}}{B{D}^{2}}$=$\frac{AF}{CD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知命題p:若α為第一象限角,β為第二象限角,則α<β;命題q:在等比數(shù)列{an}中,若a1<a2,則數(shù)列{an}為遞減數(shù)列,下列命題為真命題的是( 。
A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∨q

查看答案和解析>>

同步練習(xí)冊答案