已知:如圖所示,在△ABC中,AB=AC,O是△ABC的外心,延長(zhǎng)CA到P,再延長(zhǎng)AB
到Q,使AP=BQ.求證:O,A,P,Q四點(diǎn)共圓.
證明 連接OA,OC,OP,OQ.

∵O是△ABC的外心,∴OA=OC.
∴∠OCP=∠OAC.
由于等腰三角形的外心在頂角的平分線(xiàn)上,
∴∠OAC=∠OAQ,
從而∠OCP=∠OAQ,
在△OCP和△OAQ中,
由已知CA=AB,AP=BQ,
∴CP=AQ.又OC=OA,
∠OCP=∠OAQ,
∴△OCP≌△OAQ,
∴∠CPO=∠AQO,
∴O,A,P,Q四點(diǎn)共圓.
證明 連接OA,OC,OP,OQ.

∵O是△ABC的外心,∴OA=OC.
∴∠OCP=∠OAC.
由于等腰三角形的外心在頂角的平分線(xiàn)上,
∴∠OAC=∠OAQ,
從而∠OCP=∠OAQ,
在△OCP和△OAQ中,
由已知CA=AB,AP=BQ,
∴CP=AQ.又OC=OA,
∠OCP=∠OAQ,
∴△OCP≌△OAQ,
∴∠CPO=∠AQO,
∴O,A,P,Q四點(diǎn)共圓.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓通過(guò)不同的三點(diǎn),,和,且該圓在點(diǎn)處的切線(xiàn)的斜率等于1,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定點(diǎn)A(0,1),B(0,-1),C(1,0).動(dòng)點(diǎn)P滿(mǎn)足:.
(1)求動(dòng)點(diǎn)P的軌跡方程,并說(shuō)明方程表示的曲線(xiàn)類(lèi)型;
(2)當(dāng)時(shí),求的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等腰三角形的頂點(diǎn)是A(4,2),底邊的一個(gè)端點(diǎn)是B(3,5),求另一個(gè)端點(diǎn)C的軌跡方程,并說(shuō)明它的軌跡是什么.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若實(shí)數(shù)x,y滿(mǎn)足x2+y2+8x-6y+16=0,求x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖A.B是單位圓O上的點(diǎn),且點(diǎn)在第二象限. C是圓O與軸正半軸的交點(diǎn),A點(diǎn)的坐標(biāo)為,△為直角三角形.

(1)求; 
(2)求的長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

方程x2+y2+ax+2ay+2a2+a-1=0表示圓,則a的取值范圍是
A.(-∞,-2)B.(-,2)
C.(-2,0)D.(-2,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


求圓心在軸上,且過(guò)點(diǎn)A(1,4),B(2,)的圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將直線(xiàn),沿軸向左平移個(gè)單位,所得直線(xiàn)與圓相切,則實(shí)數(shù)的值為( 。
A.B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案