分析 由已知結(jié)合三角函數(shù)的定義求得tanα.
(1)分子分母同時除以cosα,轉(zhuǎn)化為含有tanα的代數(shù)式求得答案;
(2)把分母中的1化為sin2α+cos2α,然后分子分母同時除以cos2α,轉(zhuǎn)化為含有tanα的代數(shù)式求得答案.
解答 解:∵P(1,2)是α終邊上的點,∴tanα=2.
(1)$\frac{2sinα-cosα}{sinα+cosα}$=$\frac{2tanα-1}{tanα+1}=\frac{2×2-1}{2+1}=1$;
(2)sin2α+sinαcosα-2cos2α=$\frac{si{n}^{2}α+sinαcosα-2co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$
=$\frac{ta{n}^{2}α+tanα-2}{ta{n}^{2}α+1}=\frac{4+2-2}{4+1}=\frac{4}{5}$.
點評 本題考查任意角的三角函數(shù)定義,考查同角三角函數(shù)基本關(guān)系式的應(yīng)用,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2A${\;}_{10}^{5}$ | B. | 2A${\;}_{5}^{5}$ | C. | A${\;}_{10}^{5}$+A${\;}_{10}^{5}$ | D. | A${\;}_{10}^{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $(-\frac{1}{2})^{n-5}$ | C. | 4或$(-\frac{1}{2})^{n-5}$ | D. | n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | -6 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com