A. | (-∞,2) | B. | (0,1) | C. | (1,+∞) | D. | (2,+∞) |
分析 先判斷函數(shù)f(x)的單調(diào)性,根據(jù)單調(diào)性求解不等式,從而得出a的取值范圍.
解答 解:有題意,函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{1}{2^x}}&{x≤1}\\{-{{log}_2}x}&{x>1}\end{array}}$可得,函數(shù)f(x)在R上是減函數(shù).(如圖)
那么:f(2a-1)>f(a+1)轉(zhuǎn)化為:a+1>2a-1,解得:a<2.
故選A.
點評 本題考查了分段函數(shù)的單調(diào)性的判斷和利用單調(diào)性解不等式的問題.屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {3,7,9} | B. | {1,5} | C. | {2,6,8} | D. | {4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1<a≤2 | B. | a>2 | C. | a≥-1 | D. | a>-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com