A. | a≥3 | B. | -3≤a≤3 | C. | a≥6 | D. | -6≤a≤6 |
分析 根據(jù)題意,由函數(shù)在x≥0時(shí)的解析式,將其用分段函數(shù)表示為f(x)=$\left\{\begin{array}{l}{-x,0≤x<1}\\{-1,1≤x≤2}\\{x-3,x>2}\end{array}\right.$,又由函數(shù)為奇函數(shù),利用奇函數(shù)關(guān)于原點(diǎn)對(duì)稱的性質(zhì)可得f(x)的圖象,進(jìn)而分析可得a的取值范圍,即可得答案.
解答 解:根據(jù)題意,當(dāng)x≥0時(shí),$f(x)=\frac{1}{2}(|x-1|+|x-2|-3)$=$\left\{\begin{array}{l}{-x,0≤x<1}\\{-1,1≤x≤2}\\{x-3,x>2}\end{array}\right.$,
又由函數(shù)為奇函數(shù),則其圖象如圖:
若?x∈R,f(x-a)≤f(x),
即點(diǎn)(x-a,f(x-a))在點(diǎn)(x,f(x))的下方或同一條水平線上,
必有a≥6,
故選:C.
點(diǎn)評(píng) 本題考查函數(shù)奇偶性的性質(zhì)以及應(yīng)用,涉及分段函數(shù)的性質(zhì),關(guān)鍵是依據(jù)題意,作出函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$錢 | B. | $\frac{5}{4}$錢 | C. | $\frac{6}{5}$錢 | D. | $\frac{7}{6}$錢 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | $-\frac{1}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2-$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ | |
B. | 如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β | |
C. | 如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β | |
D. | 如果平面α⊥平面β,且直線l∥平面α,則直線l⊥平面β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com