17.已知$sin(α-\frac{π}{12})=\frac{1}{3}$,則$cos(α+\frac{17π}{12})$的值等于(  )
A.$\frac{1}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{1}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

分析 觀察發(fā)現(xiàn)$\frac{π}{12}+\frac{17π}{12}=\frac{3}{2}π$,那么$cos(α+\frac{17π}{12})$=cos(α+$\frac{3π}{2}-\frac{π}{12}$)利用誘導(dǎo)公式求解即可.

解答 解:由$sin(α-\frac{π}{12})=\frac{1}{3}$,
則$cos(α+\frac{17π}{12})$=cos(α+$\frac{3π}{2}-\frac{π}{12}$)=sin(α-$\frac{π}{12}$)=$\frac{1}{3}$.
故選:A.

點評 本題主要考查誘導(dǎo)公式的靈活應(yīng)用和構(gòu)造思想,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等差數(shù)列{an}的前n項的和為Sn,且a3與a2015是方程x2-10x+16=0的兩根,則$\frac{{S}_{2017}}{2017}$+a1009=( 。
A.10B.15C.20D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.把周長為1的圓的圓心C放在y軸,頂點A(0,1),一動點M從A開始順時針繞圓運動一周,記走過的弧長$\widehat{AM}$=x,直線AM與x軸交于點N(t,0),則函數(shù)t=f(x)的大致圖象( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=$\frac{{x}^{2}}{{e}^{|x|+1}}$(其中e為自然對數(shù)的底)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖F1,F(xiàn)2是雙曲線${C_1}:{x^2}-\frac{y^2}{8}=1$與橢圓C2的公共焦點,點A是C1,C2在第一象限內(nèi)的公共點,若|F1F2|=|F1A|,則C2的離心率是(  )
A.$\frac{2}{3}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知公比不為1的等比數(shù)列{an}的前5項積為243,且2a3為3a2和a4的等差中項.
(1)求數(shù)列{an}的通項公式an;
(2)若數(shù)列{bn}滿足bn=bn-1•log3an+2(n≥2且n∈N*),且b1=1,求數(shù)列$\left\{{\frac{(n-1)!}{{{b_{n+1}}}}}\right\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,$f(x)=\frac{1}{2}(|x-1|+|x-2|-3)$,若?x∈R,f(x-a)≤f(x),則a的取值范圍是( 。
A.a≥3B.-3≤a≤3C.a≥6D.-6≤a≤6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線(1+λ)x+(λ-1)y+2+2λ=0(λ≠±1)交橢圓$\frac{x^2}{16}+\frac{y^2}{12}$=1于A、B兩點,橢圓的右焦點為F點,則△ABF的周長為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.《九章算術(shù)》中的“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則該竹子最上面一節(jié)的容積為$\frac{13}{22}$升.

查看答案和解析>>

同步練習(xí)冊答案