12.曲線y=ln(2x-1)上的點到直線2x-y+3=0的最短距離是( 。
A.$\sqrt{5}$B.2$\sqrt{5}$C.3$\sqrt{5}$D.0

分析 設(shè)與曲線y=ln(2x-1)相切且與直線2x-y+3=0平行的直線方程為:2x-y+m=0,設(shè)切點為(x0,y0),利用導(dǎo)數(shù)的幾何意義可求出切點坐標(biāo),再利用點到直線的距離公式即可得出.

解答 解:y=ln(2x-1)的導(dǎo)函數(shù)為y′=$\frac{2}{2x-1}$,
設(shè)與曲線y=ln(2x-1)相切且與直線2x-y+3=0平行的直線方程為:2x-y+m=0,
設(shè)切點為(x0,y0
∴$\frac{2}{2{x}_{0}-1}$=2,解得x0=1,
∴y0=ln(2x0-1)=ln1=0,
∴切點為(1,0)
∴切點(1,0)到直線2x-y+3=0的距離為$\frac{|2+3|}{\sqrt{5}}$=$\sqrt{5}$.
即曲線y=ln(2x-1)上的點到直線2x-y+3=0的最短距離是$\sqrt{5}$.
故選:A.

點評 本題考查了導(dǎo)數(shù)的幾何意義、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定點A(7,0),B(1,0),平面上動點P到A點的距離與到B點的距離之比為λ(λ>0,且為常數(shù))
(I)求動點P的軌跡方程,并說明方程表示的曲線;
(II)當(dāng)λ=2時,記P點的軌跡與y軸交于M、N兩點,若過點P做圓C:(x-1)2+y2=1的兩條切線l1、l2分別交y軸于H、K兩點,在構(gòu)成三角形的條件下,求$\frac{{{S_△}_{PMN}}}{{{S_{△PHK}}}}$得最大值,并指出取得最大值時的P點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若一個橢圓長軸的長度、短軸的長度和焦距成等比數(shù)列,則該橢圓的離心率是(  )
A.$\frac{3}{5}$B.$\frac{\sqrt{5}-1}{2}$C.$\frac{-1±\sqrt{5}}{2}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.給出兩個命題:
命題p:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為空集.
命題q:函數(shù)y=(2a2-a)x為增函數(shù).
分別求出符合下列條件的實數(shù)a的范圍.
(1)p∨q為真;
(2)p∨q為真,p∧q為假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知平面APD⊥平面ABCD,AB∥CD,CD=AD=AP=4,AB=2,AD⊥AP,CB=2$\sqrt{5}$.
(Ⅰ)求證:CD⊥AP;
(Ⅱ)求三棱錐B-APC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)g(x),h(x)都是奇函數(shù),f(x)=ag(x)+bh(x)+2(a,b∈R,a2+b2≠0)在(0,+∞)上有最大值6,則定義在(-∞,0)上的函數(shù)f(x)有( 。
A.最小值-6B.最大值-6C.最小值-2D.最小值-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題

過橢圓的左頂點作斜率為的直線交橢圓于點,交軸于點中點,定點滿足:對于任意的都有,則點的坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.一副三角板拼成一個四邊形ABCD,如圖,然后將它沿BC折成直二面角.

(1)求證:平面ABD⊥平面ACD;
(2)求AD與BC所成的角的正切值;
(3)求二面角A-BD-C的大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.從0,2中選一個數(shù)字,從1,3,5中選兩個數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),其中奇數(shù)的個數(shù)為18(用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊答案