=   
【答案】分析:根據(jù)反函數(shù)的性質(zhì),求f-1(2)的問題可以變?yōu)榻夥匠?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181654206537518/SYS201310241816542065375015_DA/0.png">,解得x的值即可.
解答:解:由題意令,
解得x=-
故答案為-
點評:本題考查反函數(shù)的定義,解題的關(guān)鍵是把求函數(shù)值的問題變?yōu)榻夥春瘮?shù)的方程問題,此題難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>b>0)的左右焦點分別為F1、F2,線段F1F2被拋物線y2=2bx的焦點分成7:5的兩段,則此雙曲線的離心率為(  )
A、
9
8
B、
3
10
10
C、
3
2
4
D、
6
37
37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,f(x)=ax2+bx+c,若曲線y=f(x)在點P(x0,f(x0))處切線的傾斜角的取值范圍為[0,
π4
]
,則P到曲線y=f(x)的對稱軸的距離的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=1+ai(i是虛數(shù)單位)的模不大于2,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知總體的各個體的值由小到大依次為2,3,3,7,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10.5,平均數(shù)為10.若要使該總體的方差最小,則a、b的取值分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))是實數(shù)集R上的奇函數(shù),函數(shù)g(x)=λx-cosx在區(qū)間[
π
3
2
3
π]
上是減函數(shù).
(Ⅰ)求a的值與λ的范圍;
(Ⅱ)若對(Ⅰ)中所得的任意實數(shù)λ都有g(shù)(x)≤λt-1在x∈[
π
3
,
2
3
π]
上恒成立,求實數(shù)t的取值范圍;
(Ⅲ)若m>0,試討論關(guān)于x的方程
lnx
f(x)
=x2-2ex+m
的根的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案