4.若x,y滿足約束條件$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{x+y-3≥0}\\{\;}\end{array}\right.$,則z=2x+y的最小值是( 。
A.5B.$\frac{9}{2}$C.4D.$\frac{7}{2}$

分析 作出不等式組對應的平面區(qū)域,利用z的幾何意義即可得到結論.

解答 解:由z=2x+y,得y=-2x+z
作出不等式組對應的平面區(qū)域如圖:
由圖象可知當直線y=-2x+z過點A時,直線y=-2x+z的在y軸的截距最小,此時z最小,
由$\left\{\begin{array}{l}{2x-y=0}\\{x+y-3=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
此時z=2×1+2=4,
故選:C

點評 本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃題目的常用方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.設f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$(a>0,b>0).
(1)當a=b=1時,證明:f(x)不是奇函數(shù);
(2)設f(x)是奇函數(shù),求a與b的值;
(3)在(2)的條件下,求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$$•\overrightarrow{a}$=$\overrightarrow{a}$$•\overrightarrow$=$\overrightarrow$$•\overrightarrow{c}$=1,$\overrightarrow{a}$$•\overrightarrow{c}$=2,則|$\overrightarrow{a}$$+\overrightarrow$$+\overrightarrow{c}$|的取值范圍為( 。
A.[0,+∞)B.[2$\sqrt{2}$,+∞)C.[2$\sqrt{3}$,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若函數(shù)f(x)=sin(ωx+φ),其中$ω>0,|φ|<\frac{π}{2},x∈R$,兩相鄰對稱軸的距離為$\frac{π}{2}$,$f({\frac{π}{6}})$為最大值,則函數(shù)f(x)在區(qū)間[0,π]上的單調(diào)增區(qū)間為( 。
A.$[{0,\frac{π}{6}}]$B.$[{\frac{2π}{3},π}]$C.$[{0,\frac{π}{6}}]$和$[{\frac{π}{3},π}]$D.$[{0,\frac{π}{6}}]$和$[{\frac{2π}{3},π}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設全集U=R,A={x∈N|2x(x-4)<1},B={x∈N|y=ln(2-x)},則圖中陰影部分表示的集合的子集個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某省數(shù)學學業(yè)水平考試成績分為A、B、C、D四個等級,在學業(yè)水平成績公布后,從該省某地區(qū)考生中隨機抽取60名考生,統(tǒng)計他們的數(shù)學成績,部分數(shù)據(jù)如下:
等級ABCD
頻數(shù)2412
頻率0.1
(Ⅰ)補充完成上述表格中的數(shù)據(jù);
(Ⅱ)現(xiàn)按上述四個等級,用分層抽樣的方法從這60名考生中抽取10名,在這10名考生中,從成績A等和B等的所有考生中隨機抽取2名,求至少有一名成績?yōu)锳等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知不等式組$\left\{\begin{array}{l}x-2y+1≥0\\ x≤3\\ x+y-1≥0\end{array}\right.$表示的平面區(qū)域為D,若函數(shù)y=|x-2|+m的圖象上存在區(qū)域D上的點,則實數(shù)m的取值范圍是( 。
A.[-3,1]B.$[-3,\frac{3}{2}]$C.$[-1,\frac{3}{2}]$D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且BC邊上的高為$\frac{{\sqrt{3}}}{2}a$,則$\frac{c}+\frac{c}$取得最大值時,內(nèi)角A的值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知
(1)(2)(3)
(1)(2)求作:$\overrightarrow{a}$十$\overrightarrow$;           (3)求作:$\overrightarrow{a}$十$\overrightarrow$十$\overrightarrow{c}$.

查看答案和解析>>

同步練習冊答案