13.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且BC邊上的高為$\frac{{\sqrt{3}}}{2}a$,則$\frac{c}+\frac{c}$取得最大值時(shí),內(nèi)角A的值為$\frac{π}{6}$.

分析 利用三角形面積公式和余弦定理可得$\frac{2}{{\sqrt{3}}}sinA+2cosA=\frac{c}+\frac{c}$,由三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得$\frac{c}+\frac{c}=\frac{2}{{\sqrt{3}}}(sinA+\sqrt{3}cosA)=\frac{4}{{\sqrt{3}}}sin(A+\frac{π}{3})$,利用正弦函數(shù)的圖象和性質(zhì)即可求解.

解答 解:在△ABC中,由題意得:$\frac{1}{2}×\frac{{\sqrt{3}}}{2}a×a=\frac{1}{2}×bcsinA⇒\frac{{\sqrt{3}}}{2}{a^2}=bcsinA$,
由余弦定理得:${a^2}=\frac{2}{{\sqrt{3}}}bcsinA={b^2}+{c^2}-2bccosA$,
所以$\frac{2}{{\sqrt{3}}}sinA+2cosA=\frac{c}+\frac{c}$,
即$\frac{c}+\frac{c}=\frac{2}{{\sqrt{3}}}(sinA+\sqrt{3}cosA)=\frac{4}{{\sqrt{3}}}sin(A+\frac{π}{3})$,
所以當(dāng)$A=\frac{π}{6}$時(shí),$\frac{c}+\frac{c}$取得最大值.
故答案為:$\frac{π}{6}$.

點(diǎn)評(píng) 本題主要考查了三角形面積公式和余弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在平面直角坐標(biāo)系xOy中,A(4,0),B(2,4),C(0,2),動(dòng)點(diǎn)M在△ABC區(qū)域內(nèi)(含邊界)運(yùn)動(dòng),設(shè)$\overrightarrow{OM}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OC}$,則λ+μ的取值范圍是[1,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若x,y滿足約束條件$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{x+y-3≥0}\\{\;}\end{array}\right.$,則z=2x+y的最小值是(  )
A.5B.$\frac{9}{2}$C.4D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z1=a-2i,z2=2+i(i為虛數(shù)單位),若$\frac{{z}_{1}}{{z}_{2}}$為純虛數(shù),則實(shí)數(shù)a的值為(  )
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y-1≤0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+y(其中a>0)僅在點(diǎn)(1,1)處取得最大值,則a的取值范圍為( 。
A.(0,2)B.(0,$\frac{1}{2}$)C.(0,$\frac{1}{3}$)D.($\frac{1}{3},\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若b2=ac,c=2a,則cosC=( 。
A.$\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)的部分圖象如圖所示,則ω=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.全集U={(x,y)|x∈R,y∈R},集合S⊆U,若S中的點(diǎn)在直角坐標(biāo)平面內(nèi)形成的圖形關(guān)于原點(diǎn)、坐標(biāo)軸、直線y=x均對(duì)稱,且(2,3)∈S,則S中元素個(gè)數(shù)至少有( 。
A.4個(gè)B.6個(gè)C.8個(gè)D.10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)U=R,A={x|-1<x≤2},求∁UA.

查看答案和解析>>

同步練習(xí)冊(cè)答案