分析 利用等體積轉(zhuǎn)換,即可求出點(diǎn)A1到平面APQ的距離.
解答 解:由題意,AP=4$\sqrt{5}$,PQ=4$\sqrt{2}$,AQ=12,
∴cos∠APQ=$\frac{80+32-144}{2×4\sqrt{5}×4\sqrt{2}}$=$\frac{\sqrt{10}}{10}$,
∴sin∠APQ=$\frac{3\sqrt{10}}{10}$,
∴S△APQ=$\frac{1}{2}×4\sqrt{5}×4\sqrt{2}×\frac{3\sqrt{10}}{10}$=24,
設(shè)點(diǎn)A1到平面APQ的距離為h,則由等體積可得$\frac{1}{3}×\frac{1}{2}×8×4×4$=$\frac{1}{3}×24×h$,
∴h=$\frac{8}{3}$.
故答案為:$\frac{8}{3}$.
點(diǎn)評(píng) 本題考查求點(diǎn)A1到平面APQ的距離,考查體積的計(jì)算,正確求出△APQ的面積是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | π | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$或$\frac{3π}{4}$ | B. | $\frac{π}{3}$或$\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 8 | C. | 64 | D. | 128 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com