A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 把已知等式變形,然后利用復數(shù)代數(shù)形式的乘除運算化簡,求得z的坐標得答案.
解答 解:由1+i=$\frac{1-2i}{z}$,得$z=\frac{1-2i}{1+i}=\frac{(1-2i)(1-i)}{(1+i)(1-i)}=\frac{-1-3i}{2}=-\frac{1}{2}-\frac{3}{2}i$,
∴z在復平面內(nèi)對應的點的坐標為($-\frac{1}{2},-\frac{3}{2}$),位于第三象限角.
故選:C.
點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{{3+\sqrt{6}}}{6}$ | B. | $\frac{{3+\sqrt{6}}}{6}$ | C. | $\frac{{\sqrt{6}-3}}{6}$ | D. | $\frac{{3-\sqrt{6}}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c>a>b | B. | b>a>c | C. | a>b>c | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,3] | B. | [-$\frac{1}{3}$,3] | C. | [-$\frac{1}{3}$,$\frac{5}{2}$] | D. | [$\frac{5}{2}$,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com