【題目】已知二次函數(shù)為常數(shù), 的一個零點是,函數(shù)是自然對數(shù)的底數(shù), 設(shè)函數(shù).
(1)過點坐標(biāo)原點作曲線的切線, 證明切點的橫坐標(biāo)為;
(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù), 求的取值范圍.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)根據(jù)題意可得,再化簡,求導(dǎo)結(jié)合導(dǎo)數(shù)的幾何意義求解證明;(2)化簡求導(dǎo)得,再令從而由的正負(fù)確定函數(shù)的正負(fù),進(jìn)而確定的正負(fù),得到的單調(diào)性,從而求解.
試題解析:解:(1)是二次函數(shù)的一個零點,。
設(shè)切點為則切線的斜率。
整理得顯然,是這個方程的解。
上是增函數(shù),
則方程有唯一實數(shù)解,故
則
,
設(shè)
則
易知在上是減函數(shù),從而.
①當(dāng)即時,在區(qū)間上是增函數(shù).
在上恒成立,即在上恒成立.
在區(qū)間上是減函數(shù)。則滿足題意.
②當(dāng),即時,設(shè)函數(shù)的唯一零點為,
則在上遞增,在上遞減。
在內(nèi)有唯一一個零點,
當(dāng)時,,當(dāng)遞增,與在區(qū)間上是單調(diào)函數(shù)矛盾。
不合題意.
綜合①②得,即的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一次研究性學(xué)習(xí)有“整理數(shù)據(jù)”、“撰寫報告”兩項任務(wù),兩項任務(wù)無先后順序,每項任務(wù)的完成相互獨立,互不影響.某班研究性學(xué)習(xí)有甲、乙兩個小組.根據(jù)以往資料統(tǒng)計,甲小組完成研究性學(xué)習(xí)兩項任務(wù)的概率都為,乙小組完成研究性學(xué)習(xí)兩項任務(wù)的概率都為.若在一次研究性學(xué)習(xí)中,兩個小組完成任務(wù)項數(shù)相等.而且兩個小組完成任務(wù)數(shù)都不少于一項,則稱該班為“和諧研究班”.
(1)若,求在一次研究性學(xué)習(xí)中,已知甲小組完成兩項任務(wù)的條件下,該班榮獲“和諧研究班”的概率;
(2)設(shè)在完成4次研究性學(xué)習(xí)中該班獲得“和諧研究班”的次數(shù)為,若的數(shù)學(xué)期望,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其中是實數(shù).設(shè)為該函數(shù)圖像上的兩點,橫坐標(biāo)分別為,且.
(1求的單調(diào)區(qū)間和極值;
(2)若,函數(shù)的圖像在點處的切線互相垂直,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且的面積為.
(1)求橢圓的方程;
(2)設(shè)橢圓的左、右頂點分別為、,過點的動直線與橢圓相交于、兩點,直線與直線的交點為,證明:點總在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(Ⅱ)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求關(guān)于的線性回歸方程;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(Ⅱ)中所得的線性回歸方程是否可靠?
(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱長為1,分別是棱,的中點,過直線的平面分別與棱、交于,設(shè),,給出以下四個命題:
①四邊形為平行四邊形;
②若四邊形面積,,則有最小值;
③若四棱錐的體積,,則為常函數(shù);
④若多面體的體積,,則為單調(diào)函數(shù).
其中假命題為( )
A. ① ③ B. ② C. ③④ D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(I)求直方圖中的值;
(II)求月平均用電量的眾數(shù)和中位數(shù);
(III)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條直線l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0. 求滿足下列條件的a,b值.
(Ⅰ)l1⊥l2且l1過點(﹣3,﹣1);
(Ⅱ)l1∥l2且原點到這兩直線的距離相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三()班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題.
(1)求全班人數(shù)及分?jǐn)?shù)在之間的頻數(shù),并估計該班的平均分?jǐn)?shù);
(2)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在之間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com