【題目】已知函數(shù)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
【答案】A
【解析】
令f(x)=0,可得=,可得a在x≠0有且只有2個(gè)不等實(shí)根,等價(jià)為函數(shù)g(x)的圖象和直線(xiàn)y=a有且只有兩個(gè)交點(diǎn).求出g(x)的導(dǎo)數(shù)和單調(diào)區(qū)間,利用數(shù)形結(jié)合即可得到a的范圍.
f(x),
令f(x)=0,可得=,
當(dāng)x=0時(shí),上式顯然不成立;
可得a在x≠0有且只有2個(gè)不等實(shí)根,
等價(jià)為函數(shù)g(x)的圖象和直線(xiàn)y=a有且只有兩個(gè)交點(diǎn).
由g′(x)<0恒成立,可得x>0時(shí),g(x)遞減;
當(dāng)x<0時(shí),g(x)遞減.且g(x)在x>0或x<-1時(shí)恒成立,
作出函數(shù)g(x)的圖象,如圖:
由圖象可得a>0時(shí),直線(xiàn)y=a和y=g(x)的圖象有兩個(gè)交點(diǎn).
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為的正方體中,為的中點(diǎn),為上任意一點(diǎn),,為上任意兩點(diǎn),且的長(zhǎng)為定值,則下面的四個(gè)值中不為定值的是( )
A. 點(diǎn)到平面的距離B. 三棱錐的體積
C. 直線(xiàn)與平面所成的角D. 二面角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)若,求不等式的解集;
(2)若時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年4月1日,新華通訊社發(fā)布:國(guó)務(wù)院決定設(shè)立河北雄安新區(qū).消息一出,河北省雄縣、容城、安新3縣及周邊部分區(qū)域迅速成為海內(nèi)外高度關(guān)注的焦點(diǎn).
(1)為了響應(yīng)國(guó)家號(hào)召,北京市某高校立即在所屬的8個(gè)學(xué)院的教職員工中作了“是否愿意將學(xué)校整體搬遷至雄安新區(qū)”的問(wèn)卷調(diào)查,8個(gè)學(xué)院的調(diào)查人數(shù)及統(tǒng)計(jì)數(shù)據(jù)如下:
調(diào)查人數(shù)() | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
愿意整體搬遷人數(shù)() | 8 | 17 | 25 | 31 | 39 | 47 | 55 | 66 |
請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量關(guān)于變量的線(xiàn)性回歸方程保留小數(shù)點(diǎn)后兩位有效數(shù)字);若該校共有教職員工2500人,請(qǐng)預(yù)測(cè)該校愿意將學(xué)校整體搬遷至雄安新區(qū)的人數(shù);
(2)若該校的8位院長(zhǎng)中有5位院長(zhǎng)愿意將學(xué)校整體搬遷至雄安新區(qū),現(xiàn)該校擬在這8位院長(zhǎng)中隨機(jī)選取4位院長(zhǎng)組成考察團(tuán)赴雄安新區(qū)進(jìn)行實(shí)地考察,記為考察團(tuán)中愿意將學(xué)校整體搬遷至雄安新區(qū)的院長(zhǎng)人數(shù),求的分布列及數(shù)學(xué)期望.
參考公式及數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,為橢圓上不與左右頂點(diǎn)重合的任意一點(diǎn),,分別為的內(nèi)心、重心,當(dāng)軸時(shí),橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,且兩焦點(diǎn)的距離為,橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線(xiàn)交橢圓于、兩點(diǎn),若,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為圓上任意一點(diǎn),點(diǎn),線(xiàn)段的中垂線(xiàn)交于點(diǎn).
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若動(dòng)直線(xiàn)與圓相切,且與動(dòng)點(diǎn)的軌跡交于點(diǎn)、,求面積的最大值(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率,短軸的一個(gè)端點(diǎn)到焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)斜率為的直線(xiàn)與橢圓交于,兩點(diǎn),線(xiàn)段的中點(diǎn)在直線(xiàn)上,求直線(xiàn)與軸交點(diǎn)縱坐標(biāo)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)關(guān)于的不等式的解集為,求的值;
(2)若函數(shù)的圖象與軸圍成圖形的面積不小于50,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com