【題目】已知橢圓的左、右焦點分別為為橢圓上不與左右頂點重合的任意一點,分別為的內(nèi)心、重心,當軸時,橢圓的離心率為( )

A. B. C. D.

【答案】A

【解析】

結(jié)合圖像,利用點坐標以及重心性質(zhì),得到G點坐標,再由題目條件軸,得到點橫坐標,然后兩次運用角平分線的相關(guān)性質(zhì)得到的比值,再結(jié)合相似,即可求得點縱坐標,也就是內(nèi)切圓半徑,再利用等面積法建立關(guān)于的關(guān)系式,從而求得橢圓離心率.

如圖,令點在第一象限(由橢圓對稱性,其他位置同理),連接,顯然點在上,連接并延長交軸于點,連接并延長交軸于點,軸,過點垂直于軸于點,

設(shè)點,,則,

因為的重心,所以,

因為軸,所以點橫坐標也為,,

因為的角平分線,

則有,

又因為,所以可得,

又由角平分線的性質(zhì)可得,,而

所以得,

所以,

所以,即,

因為

,解得,所以答案為A.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高二年級學生某次數(shù)學考試成績的分布情況,從該年級的1120名學生中隨機抽取了100名學生的數(shù)學成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學生的成績按照,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,則下列結(jié)論正確的是 ( )

A. 向左平移個單位長度,得到的曲線關(guān)于原點對稱

B. 向右平移個單位長度,得到的曲線關(guān)于軸對稱

C. 向左平移個單位長度,得到的曲線關(guān)于原點對稱

D. 向右平移個單位長度,得到的曲線關(guān)于軸對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1996年嘉祥被國家命名為“中國石雕之鄉(xiāng)”,20086月,嘉祥石雕登上了國家文化部公布的“第二批國家級非物質(zhì)文化遺產(chǎn)名錄”,嘉祥石雕文化產(chǎn)業(yè)園被國家文化部命名為“國家級文化產(chǎn)業(yè)示范基地”,近年來,嘉祥石雕產(chǎn)業(yè)發(fā)展十分迅猛,產(chǎn)品暢銷全國各地及美國、日本、東南亞國家和地區(qū),嘉祥某石雕廠為嚴把質(zhì)量關(guān),對制作的每件石雕都請3位行家進行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件石雕3位行家都認為質(zhì)量過關(guān),則該石雕質(zhì)量為優(yōu)秀級;(ii)若僅有1位行家認為質(zhì)量不過關(guān),再由另外2位行家進行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認為質(zhì)量過關(guān),則該石雕質(zhì)量為良好級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認為質(zhì)量不過關(guān),則該石雕需返工重做.已知每一次質(zhì)量把關(guān)中一件石雕被1位行家認為質(zhì)量不過關(guān)的概率均為,且每1位行家認為石雕質(zhì)量是否過關(guān)相互獨立.則一件石雕質(zhì)量為優(yōu)秀級的概率為______ ;一件石雕質(zhì)量為良好級的概率為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形中,,,,,為線段(含端點)上的一個動點.設(shè),,對于函數(shù),下列描述正確的是(

A.的最大值和無關(guān)B.的最小值和無關(guān)

C.的值域和無關(guān)D.在其定義域上的單調(diào)性和無關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,,軸上兩個動點,點在直線上,且滿足,.

(1)求點的軌跡方程;

(2)記點的軌跡為曲線,為曲線正半軸的交點,、為曲線上與不重合的兩點,且直線與直線的斜率之積為,試探究面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是梯形, , ,側(cè)面底面.

(1)求證:平面平面

(2)若與底面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線

1)若直線與圓O交于不同的兩點A, B,當時,求k的值.

2)若k=1,P是直線上的動點,過P作圓O的兩條切線PC、PD,切點為C、D,問:直線CD是否過定點?若過定點,求出定點坐標;若不過定點,說明理由.

3)若EF、GH為圓的兩條相互垂直的弦,垂足為M(1,),求四邊形EGFH的面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)供電所為了調(diào)查農(nóng)村居民用電量情況,隨機抽取了500戶居民去年的用電量(單位:),將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如下;其中直方圖從左到右前3個小矩形的面積之比為123.

1)該鄉(xiāng)鎮(zhèn)月均用電量在37.5~39.5之內(nèi)的居民共有多少戶?

2)若按分層抽樣的方法從中抽出100戶作進一步分析,則用電量在37.5~39.5內(nèi)居民應(yīng)抽取多少戶?

3)試根據(jù)直方圖估算該鄉(xiāng)鎮(zhèn)居民月均用電量的中位數(shù)約是多少?(精確到0.01)

查看答案和解析>>

同步練習冊答案