17.已知角的終邊過點(diǎn)P(-1,2),則cosα的值為-$\frac{\sqrt{5}}{5}$.

分析 先求出角α的終邊上的點(diǎn)P(-1,2)到原點(diǎn)的距離為 r,再利用任意角的三角函數(shù)的定義cosα=$\frac{x}{r}$求出結(jié)果.

解答 解:角α的終邊上的P(-1,2)到原點(diǎn)的距離為 r=$\sqrt{5}$,
由任意角的三角函數(shù)的定義得 cosα=$\frac{x}{r}$=$\frac{-1}{\sqrt{5}}$=-$\frac{\sqrt{5}}{5}$.
故答案為:-$\frac{\sqrt{5}}{5}$.

點(diǎn)評(píng) 本題考查任意角的三角函數(shù)的定義,兩點(diǎn)間的距離公式的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.當(dāng)圓錐的側(cè)面積和底面積的比值是2時(shí),圓錐軸截面的頂角等于( 。
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=log2(x2-mx+3m)滿足:對(duì)任意的實(shí)數(shù)x1,x2,當(dāng)2≤x1<x2時(shí),都有f(x1)-f(x2)<0,則m的取值范圍是(-4,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.?dāng)?shù)列{an}滿足a1=1,an+an+1=($\frac{1}{4}$)n(n∈N*),記Tn=a1+a2•4+a3•42+…+an•4n-1,類比課本中推導(dǎo)等比數(shù)列前n項(xiàng)和公式的方法,可求得5Tn-4n•an=( 。
A.nB.n2C.2n2D.n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=9x-m•3x+1,在(0,+∞)的圖象恒在x軸上方,則m的取值范圍是( 。
A.m>2B.m≥2C.m≤2D.m<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)  f(x)=$\left\{\begin{array}{l}\frac{1}{x+1}-3,x∈(-1,0]\\ x,x∈(0,1]\end{array}$,且g(x)=f(x)-mx-m在(-1,1]內(nèi)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義在R上的函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+xy(x∈R),f(1)=1,則f(3)=(  )
A.-3B.3C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.公路陡坡警示牌如圖所示,其中“3.8%”表示這段道路的橫截面斜坡所在直線的斜率,這段斜坡的傾斜角的大小為arctan0.038度.(答案保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.?dāng)?shù)列{an}的通項(xiàng)公式${a_n}=n•{2^n}$,則其前9項(xiàng)和為8194.

查看答案和解析>>

同步練習(xí)冊(cè)答案