6.公路陡坡警示牌如圖所示,其中“3.8%”表示這段道路的橫截面斜坡所在直線的斜率,這段斜坡的傾斜角的大小為arctan0.038度.(答案保留整數(shù))

分析 由題意,設(shè)這段斜坡的傾斜角的大小為α,則tanα=3.8%,即可得出結(jié)論.

解答 解:由題意,設(shè)這段斜坡的傾斜角的大小為α,則tanα=3.8%
∴這段斜坡的傾斜角的大小為arctan0.038.
故答案為arctan0.038.

點評 本題考查直線斜率與傾斜角的關(guān)系,考查學生的計算能力,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=$\left\{\begin{array}{l}{(x-a)^2}+1,x≤0\\{x^2}+\frac{2}{x}+a,x>0\end{array}$,若f(0)是f(x)的最小值,則a的取值范圍為( 。
A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知角的終邊過點P(-1,2),則cosα的值為-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)$f(x)=sin({wx+ϕ}),({w>0,|ϕ|<\frac{π}{2}})$,其相鄰兩個最高點之間的距離是π,且函數(shù)$f({x+\frac{π}{12}})$是偶函數(shù),下列判斷正確的是( 。
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)在$[{\frac{3π}{4},π}]$上單調(diào)遞增
C.函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{7π}{12}$對稱
D.函數(shù)f(x)的圖象關(guān)于點$({\frac{π}{12},0})$對稱-

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2,若AD=6,且AB+BD=AC+CD=10,則四面體ABCD的體積的最大值是$2\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若函數(shù)f(x)的定義域是[0,1],則函數(shù)f(2x)+f(x+$\frac{1}{3}$)的定義域為(  )
A.[-$\frac{1}{3}$,$\frac{2}{3}$]B.[-$\frac{1}{3}$,$\frac{1}{2}$]C.[0,$\frac{1}{2}$]D.[0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若函數(shù)f(x)=$\left\{\begin{array}{l}({2b-1})x+b-1,x>0\\-{x^2}+({2-b})x,x≤0\end{array}$,在R上為增函數(shù),則實數(shù)b的取值范圍是( 。
A.$({\frac{1}{2},+∞})$B.[1,2]C.$(\frac{1}{2},2]$D.$(-\frac{1}{2},2]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)k∈R,若$\frac{{y}^{2}}{k}$-$\frac{{x}^{2}}{k-2}$=1表示焦點在y軸上的雙曲線,則半焦距的取值范圍是($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.利用單調(diào)性定義判斷函數(shù)f(x)=$\frac{x-2}{x-1}$(x∈[2,6])是增函數(shù)還是減函數(shù),并求出最值.

查看答案和解析>>

同步練習冊答案