分析 關于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0可看成前者不等式中的x用$\frac{1}{x}$代入可得不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集.
解答 解:若關于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1),
則關于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0可看成前者不等式中的x用$\frac{1}{x}$代入可得,
則$\frac{1}{x}$∈(-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1),則x∈(-3,-1)∪(1,2),
故答案為:(-3,-1)∪(1,2).
點評 本題考查不等式的解法,考查方法的類比,正確理解題意是關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1008 | B. | 2014 | C. | 2015 | D. | 2016 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30 | B. | 40 | C. | 90 | D. | 240 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{12}{25}$ | B. | -$\frac{12}{25}$ | C. | $\frac{24}{25}$ | D. | -$\frac{24}{25}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 20種 | B. | 12種 | C. | 120種 | D. | 40種 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com