14.設(shè)向量$\overrightarrow{a}$=(1,cosθ))與$\overrightarrow$=(-1,2cosθ)垂直,則cos2θ等于(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-1

分析 利用向量垂直,得出1×(-1)+cosθ×2cosθ=0,化簡(jiǎn)整理即可得解.

解答 解:∵$\overrightarrow{a}$=(1,cosθ)與$\overrightarrow$=(-1,2cosθ)垂直,
∴$\overrightarrow{a}•\overrightarrow$=0,
即1×(-1)+cosθ×2cosθ=0,
∴化簡(jiǎn)整理得2cos2θ-1=0,
∴即cos2θ=0
故選:A.

點(diǎn)評(píng) 本題考查向量垂直的坐標(biāo)運(yùn)算,二倍角余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E是BC上一點(diǎn)且BE=$\frac{2}{3}$BC,PB⊥AE.
(Ⅰ)求證:AB⊥平面PAE;
(Ⅱ)求點(diǎn)C到平面PDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在平面直角坐標(biāo)系xOy中,若直線l:x-2y+m-1=0在y軸上的截距為$\frac{1}{2}$,則實(shí)數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在10件同類型的產(chǎn)品中有2件次品,現(xiàn)抽取3件進(jìn)行檢驗(yàn),每次抽取1件,并且取出后不再放回,則取出的3件產(chǎn)品中至少有1件次品的概率為( 。
A.$\frac{7}{10}$B.$\frac{3}{5}$C.$\frac{8}{15}$D.$\frac{7}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=(m2-m-1)x-5m-3是冪函數(shù)且是(0,+∞)上的增函數(shù),則函數(shù)g(x)=$\frac{x+1}{{\sqrt{{{log}_{0.2}}(x+m)}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,2)B.(1,2]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知具有線性相關(guān)的兩個(gè)變量x,y之間的一組數(shù)據(jù)如下表:
 x 4 2 1-1-2
 y 24 36 40 49 59
且回歸方程$\widehat{y}$=-5.5x+$\widehat{a}$,則當(dāng)x=6時(shí),y的預(yù)測(cè)值為( 。
A.11B.13C.14D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知定義在R上的函數(shù)f(x)=$\frac{2}{1+{2}^{x}}$-1.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并證明f(x)的單調(diào)性;
(3)若f(2-t2)+f(t)<0,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.對(duì)于問(wèn)題:“已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0”,給出如下一種解法:
解:由ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),
即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1),則關(guān)于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為(-3,-1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)l,m是兩條不同的直線,α,β是兩個(gè)不重合的平面,給出下列四個(gè)命題:
①若α∥β,l⊥α,則l⊥β;  ②若l∥m,l?α,m?β,則α∥β;
③若m⊥α,l⊥m,則l∥α;  ④若α⊥β,l?α,m?β,則l⊥m.
其中真命題的序號(hào)為(  )
A.②③B.C.③④D.①④③

查看答案和解析>>

同步練習(xí)冊(cè)答案