【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程和的普通方程;
(2)與相交于兩點(diǎn),設(shè)點(diǎn)為上異于的一點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)到的距離.
【答案】(1) (2)
【解析】試題分析:(1)由和代入 直線的極坐標(biāo)方程即可得的直角坐標(biāo)方,曲線利用消去參數(shù)即可;
(2)要使的面積最大,只需點(diǎn)到直線的距離最大,利用點(diǎn)到直線的距離 即可得最值.
試題解析:
(1)因?yàn)橹本的極坐標(biāo)方程為,
所以,
所以直線的直角坐標(biāo)方程為.
曲線的參數(shù)方程為,(是參數(shù)),
所以曲線的普通方程為.
(2)直線與曲線相交于兩點(diǎn),所以為定值.
要使的面積最大,只需點(diǎn)到直線的距離最大.
設(shè)點(diǎn)為曲線上任意一點(diǎn).
則點(diǎn)到直線的距離 ,
當(dāng)時(shí),取最大值為.
所以當(dāng)面積最大時(shí),點(diǎn)到的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于厘米的玉米為高莖玉米,否則為矮莖玉米
(1)完成列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方式從抗倒伏的玉米中抽出株,再?gòu)倪@株玉米中選取株進(jìn)行雜交實(shí)驗(yàn),選取的植株均為矮莖的概率是多少?
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表;
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“課外體育達(dá)標(biāo)”性別有關(guān)?
參考公式,其中
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場(chǎng)研究人員為了了解共享單車運(yùn)營(yíng)公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的拆線圖.
(1)由拆線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率與月份代碼之間的關(guān)系.求關(guān)于的線性回歸方程,并預(yù)測(cè)公司2017年4月份(即時(shí))的市場(chǎng)占有率;
(2)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車.現(xiàn)有采購(gòu)成本分別為1000元/輛和1200元/輛的兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車輛報(bào)廢年限各不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車型的單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表如下:
車型 報(bào)廢年限 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
| 20 | 35 | 35 | 10 | 100 |
| 10 | 30 | 40 | 20 | 100 |
經(jīng)測(cè)算,平均每輛單車每年可以帶來(lái)收入500元.不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整年,且以頻率作為每輛單車使用壽命的概率.如果你是 公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車型?
(參考公式:回歸直線方程為,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,且,若以為左右焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn).
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)右焦點(diǎn)且斜率為的動(dòng)直線與相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值?若存在,試求出定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù)),圓與圓外切于原點(diǎn),且兩圓圓心的距離,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓和圓的極坐標(biāo)方程;
(2)過(guò)點(diǎn)的直線與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn),與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn),且,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,過(guò)且與圓相切的動(dòng)圓圓心為.
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)過(guò)點(diǎn)的直線交曲線于,兩點(diǎn),過(guò)點(diǎn)的直線交曲線于,兩點(diǎn),且,垂足為(,,,為不同的四個(gè)點(diǎn)).
①設(shè),證明:;
②求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解戶籍性別對(duì)生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為100的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各50人;男性60人,女性40人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對(duì)應(yīng)比例,則下列敘述中錯(cuò)誤的是( )
A. 是否傾向選擇生育二胎與戶籍有關(guān)
B. 是否傾向選擇生育二胎與性別無(wú)關(guān)
C. 傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同
D. 傾向選擇生育二的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com