【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù)),圓與圓外切于原點(diǎn),且兩圓圓心的距離,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓和圓的極坐標(biāo)方程;
(2)過點(diǎn)的直線與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn),與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn),且,求四邊形面積的最大值.
【答案】(1)圓的極坐標(biāo)方程為,圓的極坐標(biāo)方程.(2)9.
【解析】試題分析:(1)根據(jù)極坐標(biāo)和普通方程的轉(zhuǎn)化公式得到極坐標(biāo)方程;(2),根據(jù)極徑的定義得到,從而得到最值.
解析:
(1)由圓的參數(shù)方程(為參數(shù)),
得,
所以,
又因?yàn)閳A與圓外切于原點(diǎn),且兩圓圓心的距離,
可得 , ,則圓的方程為
所以由得圓的極坐標(biāo)方程為,
圓的極坐標(biāo)方程為
(2)由已知設(shè),
則由 可得, ,
由(1)得,
所以
所以當(dāng)時(shí),即時(shí), 有最大值9
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,為的中點(diǎn),為上一點(diǎn),交于點(diǎn).
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓: ,長軸的右端點(diǎn)與拋物線: 的焦點(diǎn)重合,且橢圓的離心率是.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過作直線交拋物線于, 兩點(diǎn),過且與直線垂直的直線交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程和的普通方程;
(2)與相交于兩點(diǎn),設(shè)點(diǎn)為上異于的一點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)到的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)已知與直線平行的直線過點(diǎn),且與曲線交于兩點(diǎn),試求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面,為直角梯形,,,,,過點(diǎn)作平面平行于平面,平面與棱,,,分別相交于點(diǎn),,,.
(1)求的長度;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以、、、、、為頂點(diǎn)的五面體中,平面平面,,四邊形為平行四邊形,且.
(1)求證:;
(2)若,,直線與平面所成角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左右焦點(diǎn)分別為,且關(guān)于直線的對稱點(diǎn)在直線上.
(1)求橢圓的離心率;
(2)若過焦點(diǎn)垂直軸的直線被橢圓截得的弦長為,斜率為的直線交橢圓于,兩點(diǎn),問是否存在定點(diǎn),使得,的斜率之和為定值?若存在,求出所有滿足條件的點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com