在平面直角坐標(biāo)系中,定義為兩點(diǎn),

之間的“折線距離”.則坐標(biāo)原點(diǎn)與直線上一點(diǎn)的“折線距離”的最小值是     ;圓上一點(diǎn)與直線上一點(diǎn)的“折線距離”的最小值是     .

 

【答案】

,

【解析】

試題分析:直線上的點(diǎn)可以表示成,那么原點(diǎn)到它的折線距離為,所以只需求的最小值,

,畫出圖象可以看當(dāng)時取到最小值同理,設(shè)圓上的點(diǎn)為,所以所求即為的最小值,而

所以最小值為.

考點(diǎn):本小題主要考查新定義下分段函數(shù)求最值問題,考查學(xué)生對新定義的理解和利用能力以及運(yùn)算求解能力和對問題的轉(zhuǎn)化能力.

點(diǎn)評:第二問求解時也可以按照分段函數(shù)討論,但比較麻煩,用絕對值的性質(zhì)可以簡化運(yùn)算.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
③直線l經(jīng)過無窮多個整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個不同的整點(diǎn)
④直線y=kx+b經(jīng)過無窮多個整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊答案