【題目】下列說法中正確的個數(shù)是( )
(1) 已知,,,則
(2)將6個相同的小球放入4個不同的盒子中,要求不出現(xiàn)空盒,共有10種放法.
(3) 被除后的余數(shù)為.
(4) 若,則=
(5)拋擲兩個骰子,取其中一個的點數(shù)為點的橫坐標(biāo),另一個的點數(shù)為點的縱坐標(biāo),連續(xù)拋擲這兩個骰子三次,點在圓內(nèi)的次數(shù)的均值為
A. 1B. 2C. 3D. 4
【答案】C
【解析】
(1)中直接使用二項分布公式,,可計算;
(2)中相同元素分組采用隔板法,6個球中間5個空隙,分4組只需插入3個隔板即可;
(3),展開式中除了最后一項1都是49的倍數(shù),都能被7整除;
(4)偶數(shù)項的系數(shù)和只需分別令和,再兩式相加減即可;
(5)顯然服從二項分布,n=3,所以只需算出成功的概率P,然后用可計算.
解:,,,解得,(1)正確;
6個相同的小球放入4個不同的盒子中,要求不出現(xiàn)空盒,即每個盒子至少1個,采用隔板法共種,(2)正確;,展開式中只有最后一項1不是7的倍數(shù),所以被除后的余數(shù)為,(3)錯誤;在中,分別令和得,,兩式相加除以2得:=,(4)正確;拋擲兩個骰子點共有36種情況,其中在圓內(nèi)的有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)共8種,所以擲這兩個骰子一次,點在圓內(nèi)的概率為,因為,所以的均值為,(5)錯誤;所以共有3個正確
故選C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]已知函數(shù)f(x)=log ( |x + 1| + |x- 1|- a ).
(I)當(dāng)a=3時,求函數(shù)f(x)的定義域;
(Ⅱ)若不等式f(x)的解集為R,求實數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點和短軸的兩個頂點構(gòu)成的四邊形是一個正方形,且其周長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點的直線與橢圓相交于兩點,點關(guān)于原點的對稱點為,若點總在以線段為直徑的圓內(nèi),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時, ;當(dāng)時, .
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設(shè) ,則.
∵, ,∴在上單調(diào)遞增,
從而得在上單調(diào)遞增,又∵,
∴當(dāng)時, ,當(dāng)時, ,
因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,
由此可知.
∵, ,
∴.
設(shè),
則 .
∵當(dāng)時, ,∴在上單調(diào)遞增.
又∵,∴當(dāng)時, ;當(dāng)時, .
①當(dāng)時, ,即,這時, ;
②當(dāng)時, ,即,這時, .
綜上, 在上的最大值為:當(dāng)時, ;
當(dāng)時, .
[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的左焦點的直線與橢圓交于兩點,直線過坐標(biāo)原點且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點且均不與點重合,設(shè)直線與軸所成的銳角為,直線與軸所成的銳角為,判斷與的大小關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù)的圖像時,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
觀察表中y值隨x值的變化情況,完成以下的問題:
(1)函數(shù)的遞減區(qū)間是 ,遞增區(qū)間是 ;
(2)若對任意的恒成立,試求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com