【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點M為PC的中點.
(1)求證:PA∥平面BMD;
(2)求證:AD⊥PB;
(3)若AB=PD=2,求點A到平面BMD的距離.
【答案】(1)詳見解析;(2)詳見解析;(3).
【解析】
(1)設AC和BD交于點O,MO為三角形PAC的中位線可得MO∥PA,再利用直線和平面平行的判定定理,證得結論.
(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,證得 AD⊥BD,可證AD⊥平面PBD,從而證得結論.
(3)點A到平面BMD的距離等于點C到平面BMD的距離h,求出MN、MO的值,利用等體積法求得點C到平面MBD的距離h.
(1)證明:設AC和BD交于點O,則由底面ABCD是平行四邊形可得O為AC的中點.
由于點M為PC的中點,故MO為三角形PAC的中位線,故MO∥PA.再由PA不在平面BMD內,而MO在平面BMD內,
故有PA∥平面BMD.
(2)由PD⊥平面ABCD,可得PD⊥AD,平行四邊形ABCD中,∵∠BCD=60°,AB=2AD,
∴cos∠BADcos60°,∴AD⊥BD.
這樣,AD垂直于平面PBD內的兩條相交直線,故AD⊥平面PBD,∴AD⊥PB.
(3)若AB=PD=2,則AD=1,BD=ABsin∠BAD=2,
由于平面BMD經過AC的中點,故點A到平面BMD的距離等于點C到平面BMD的距離.
取CD得中點N,則MN⊥平面ABCD,且MNPD=1.
設點C到平面MBD的距離為h,則h為所求.
由AD⊥PB 可得BC⊥PB,故三角形PBC為直角三角形.
由于點M為PC的中點,利用直角三角形斜邊的中線等于斜邊的一半,可得MD=MB,故三角形MBD為等腰三角形,
故MO⊥BD.
由于PA,∴MO.
由VM﹣BCD=VC﹣MBD 可得,()MN(BD×MO )×h,
故有 ()×1()h,
解得h.
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直線坐標系xOy中,曲線C1的參數方程為 (t為參數,a>0).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(1)說明C1是哪一種曲線,并將C1的方程化為極坐標方程;
(2)直線C3的極坐標方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點都在C3上,求a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行了調查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),…[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的a值;
(2)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數.說明理由;
(3)估計居民月均用水量的中位數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)=ax2+x.
(Ⅰ)當a>0時,求證:對任意的x1,x2∈R都有[f(x1)+f(x2)]成立;
(Ⅱ)當x∈[0,2]時,|f(x)|≤1恒成立,求實數a的取值范圍;
(Ⅲ)若a=,點p(m,n2)(m∈Z,n∈Z)是函數y=f(x)圖象上的點,求m,n.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數y=f(x)的圖象上存在兩點,使得函數的圖象在這兩點處的切線互相垂直,則稱y=f(x)具有T性質.下列函數中具有T性質的是( )
A.y=sinx
B.y=lnx
C.y=ex
D.y=x3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M的方程為x 2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過P點作圓M的切線PA,PB,切點為A,B.
(1)若∠APB=60°,試求點P的坐標;
(2)若P點的坐標為(2,1),過P作直線與圓M交于C,D兩點,當時,求直線CD的方程;
(3)求證:經過A,P,M三點的圓必過定點,并求出所有定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系xOy中,橢圓C: =1(a>b>0)的離心率是 ,拋物線E:x2=2y的焦點F是C的一個頂點.
(1)求橢圓C的方程;
(2)設P是E上的動點,且位于第一象限,E在點P處的切線l與C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
①求證:點M在定直線上;
②直線l與y軸交于點G,記△PFG的面積為S1 , △PDM的面積為S2 , 求 的最大值及取得最大值時點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將邊長為1的正方形AA1O1O(及其內部)繞OO1旋轉一周形成圓柱,如圖,AC長為 π,A1B1長為 ,其中B1與C在平面AA1O1O的同側.
(1)求三棱錐C﹣O1A1B1的體積;
(2)求異面直線B1C與AA1所成的角的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com