17.若函數(shù)f(x)=ex(x2-2x+1+2a)-x恒有兩個零點,則a的取值范圍為( 。
A.(0,1)B.(-∞,1)C.(-∞,$\frac{1}{2e}$)D.($\frac{1}{2e}$,+∞)

分析 令f(x)=0得出x2-2x+1+2a=$\frac{x}{{e}^{x}}$,做出兩函數(shù)的圖象,根據(jù)圖象判斷兩函數(shù)最值的大小關(guān)系,得出a的范圍.

解答 解:令f(x)=0得x2-2x+1+2a=$\frac{x}{{e}^{x}}$,
令g(x)=$\frac{x}{{e}^{x}}$,則g′(x)=$\frac{1-x}{{e}^{x}}$,
∴g(x)在(-∞,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
做出y=x2-2x+1+2a和g(x)的函數(shù)圖象,如圖所示:

∵f(x)有兩個零點,∴y=x2-2x+1+2a和g(x)的函數(shù)圖象有兩個交點,
∴2a<$\frac{1}{e}$,解得a<$\frac{1}{2e}$.
故選:C.

點評 本題考查了函數(shù)零點與函數(shù)圖象的關(guān)系,函數(shù)最值的計算,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C所對的三邊分別是a,b,c,已知cosC+$\frac{c}$cosB=2,
(1)求$\frac{sinA}{sinB}$;
(2)若C=$\frac{π}{3}$,c=2$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在實數(shù)x1,x2,x3,x4,滿足f(x1)=f(x2)=f(x3)=f(x4),則$\frac{{{x_3}•{x_4}}}{{{x_1}•{x_2}}}$的取值范圍是(20,32).

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(理)試卷(解析版) 題型:填空題

已知常數(shù),且不等式解集為空集,則的最大值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知隨機變量X的分布列如表,則X取負數(shù)的概率為( 。
X-2-101
P0.10.40.30.2
A.0.1B.0.4C.0.5D.0.04

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設(shè)直線參數(shù)方程為$\left\{{\begin{array}{l}{x=2+\frac{t}{2}}\\{y=3+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),則它的普通方程為$\sqrt{3}$x-y-2$\sqrt{3}$+3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD為菱形,E為棱PB的中點,O為AC與BD的交點,
(Ⅰ)證明:PD∥平面EAC
(Ⅱ)證明:平面EAC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)集合M={x|x2≥x},N={x|log${\;}_{\frac{1}{2}}$(x+1)>0},則有( 。
A.M∩N=∅B.M∪N=RC.N⊆MD.M⊆∁RN
E.M⊆∁RN         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知全集U=R,A={x∈R|x2-3x+b=0},B={x∈R|(x-2)(x2+3x-4=0)}.
(1)若b=4時,存在集合M使得A是M的真子集,M是B的真子集,求出所有這樣的集合M;
(2)集合A,B是否能滿足(∁UB)∩A=∅?若能,求實數(shù)b的取值范圍;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案