【題目】以邊長為4的等比三角形的頂點以及邊的中點為左、右焦點的橢圓過兩點.

1求該橢圓的標準方程;

2過點軸不垂直的直線交橢圓于兩點,求證直線的交點在一條直線上.

【答案】12

【解析】

試題分析:

1先建立直角坐標系,使橢圓方程為標準方程,則

2研究圓錐曲線的定值問題,一般方法為以算代證,即先求兩直線交點坐標,再確定交點所在定直線:由對稱性可知兩直線交點必在垂直于x軸的直線上,因此運算目標為求交點橫坐標為定值,設的方程為,,則 ,,消去y得,再利用直線方程與橢圓方程聯(lián)立方程組,結合韋達定理可得,代入化簡得

試題解析:1 由題意可知兩焦點為,且,因此橢圓的方程為. 4分

2 不與軸重合時,

的方程為,且,

聯(lián)立橢圓與直線消去可得,即

,

-

,即.

軸重合時,即的方程為,即,.

聯(lián)立消去可得.

綜上的交點在直線上.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

)若在區(qū)間上為增函數(shù),求的取值范圍;

)當時,證明:

)當時,斷方程是否有實數(shù)解,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的離心率為,右頂點為,直線過原點,且點x軸的上方,直線分別交直線于點.

1)若點,求橢圓的方程及ABC的面積;

2)若為動點,設直線的斜率分別為、.

試問是否為定值?若為定值,請求出;否則,請說明理由;

AEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六組[40,50),[50,60) ...[90,100]后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ) 求成績落在[70,80)上的頻率,并補全這個頻率分布直方圖;

(Ⅱ) 估計這次考試的及格率(60分及以上為及格)和平均分;

(Ⅲ) 設學生甲、乙的成績屬于區(qū)間[40,50),現(xiàn)從成績屬于該區(qū)間的學生中任選兩人,求甲、乙中至少有一人被選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設事件A表示“關于的一元二次方程有實根”,其中為實常數(shù).

(Ⅰ)若為區(qū)間[0,5]上的整數(shù)值隨機數(shù),為區(qū)間[0,2]上的整數(shù)值隨機數(shù),求事件A發(fā)生的概率;

(Ⅱ)若為區(qū)間[0,5]上的均勻隨機數(shù),為區(qū)間[0,2]上的均勻隨機數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設l,m是兩條不同的直線,α是一個平面,則下列命題正確的是( )

A. l⊥m,,則l⊥α

B. l⊥α,l∥m,則m⊥α

C. l∥α,,則l∥m

D. l∥α,m∥α,則l∥m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù),其中.

1如果函數(shù)處的切線均為,求切線的方程及的值;

2如果曲線有且僅有一個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】劉老師是一位經驗豐富的高三理科班班主任,經長期研究,他發(fā)現(xiàn)高中理科班的學生的數(shù)學成績(總分150分)與理綜成績(物理、化學與生物的綜合,總分300分)具有較強的線性相關性,以下是劉老師隨機選取的八名學生在高考中的數(shù)學得分x與理綜得分y(如下表):

學生編號

1

2

3

4

5

6

7

8

數(shù)學分數(shù)x

52

64

87

96

105

123

132

141

理綜分數(shù)y

112

132

177

190

218

239

257

275

參考數(shù)據(jù)及公式:

(1)求出y關于x的線性回歸方程;

(2)若小汪高考數(shù)學110分,請你預測他理綜得分約為多少分?(精確到整數(shù)位);

(3)小金同學的文科一般,語文與英語一起能穩(wěn)定在215分左右.如果他的目標是在

高考總分沖擊600分,請你幫他估算他的數(shù)學與理綜大約分別至少需要拿到多少分?(精確到整數(shù)位).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,棱形的邊長為6, ,.將棱形沿對角線折起,得到三棱錐,點是棱的中點, .

(Ⅰ)求證:∥平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

同步練習冊答案