8.如果sin(π+α)=-$\frac{\sqrt{3}}{2}$,那么cos($\frac{π}{2}$+α)=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 根據(jù)三角函數(shù)的誘導(dǎo)公式,求出sinα的值,即可求出結(jié)果.

解答 解:∵sin(π+α)=-sinα=-$\frac{\sqrt{3}}{2}$,
∴sinα=$\frac{\sqrt{3}}{2}$,
∴cos($\frac{π}{2}$+α)=-sinα=-$\frac{\sqrt{3}}{2}$.
故選:D.

點評 本題考查了三角函數(shù)誘導(dǎo)公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{a+lnx}{x}$在x=1處取得極值.
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[1,+∞)時,f(x)≥$\frac{m}{1+x}$恒成立,求實數(shù)m的取值范圍;
(Ⅲ)當(dāng)n∈N*,n≥2時,求證:nf(n)<2+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知角α的終邊上一點P的坐標(biāo)為(${\sqrt{3}$,-1),則角α的最小正值為( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{5π}{3}$D.$\frac{11π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)<$\frac{1}{3}$,則f(x)<$\frac{x}{3}+\frac{2}{3}$的解集為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知定義在R上的連續(xù)函數(shù)g(x)滿足:①當(dāng)x>0時,g′(x)>0恒成立(g′(x)為函數(shù)g(x)的導(dǎo)函數(shù));②對任意的x∈R都有g(shù)(x)=g(-x),又函數(shù)f(x)滿足:對任意的x∈R,都有$f(\sqrt{3}+x)=f(x-\sqrt{3})$成立.當(dāng)$x∈[-\sqrt{3},\sqrt{3}]$時,f(x)=x3-3x.若關(guān)于x的不等式g[f(x)]≤g(a2-a+2)對?x∈[-$\sqrt{3}$,$\frac{3}{2}+2\sqrt{3}$]恒成立,則a的取值范圍是(  )
A.a∈RB.0≤a≤1
C.$-\frac{1}{2}-\frac{{3\sqrt{3}}}{4}≤a≤-\frac{1}{2}+\frac{{3\sqrt{3}}}{4}$D.a≤0或a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在等差數(shù)列{an}中,已知S9=90,則a3+a5+a7=(  )
A.10B.20C.30D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.將序號分別為1,2,3,4,5的5張參觀券全部分給4人,每人至少1張.如果分給同一人的2張參觀券連號,那么不同的分法種數(shù)是( 。
A.24B.96C.144D.210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在等比數(shù)列{an}中,已知a1=1,且$\frac{{a}_{3}+{a}_{4}}{{a}_{1}+{a}_{2}}$=4,則S5的值是31或11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)隨機變量ξ~N(0,1),P(ξ>1)=0.2,則P(-1<ξ<1)=( 。
A.0.1B.0.3C.0.6D.0.8

查看答案和解析>>

同步練習(xí)冊答案