【題目】下列說法錯誤的是( )

A. 垂直于同一個平面的兩條直線平行

B. 若兩個平面垂直,則其中一個平面內垂直于這兩個平面交線的直線與另一個平面垂直

C. 一個平面內的兩條相交直線均與另一個平面平行,則這兩個平面平行

D. 一條直線與一個平面內的無數(shù)條直線垂直,則這條直線和這個平面垂直

【答案】D

【解析】

根據(jù)線面垂直的性質定理判斷;根據(jù)面面垂直的性質定理判斷;根據(jù)面面平行的判定定理判斷;根據(jù)特例法判斷.

由線面垂直的性質定理知,垂直于同一個平面的兩條直線平行,正確;

由面面垂直的性質定理知,若兩個平面垂直,則其中一個平面內垂直于這兩個平面交線的直線與另一個平面垂直,正確;

由面面平行的判定定理知,一個平面內的兩條相交直線均與另一個平面平行,則這兩個平面平行,正確;

當一條直線與平面內無數(shù)條相互平行的直線垂直時,該直線與平面不一定垂直,錯誤,故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某高校在2019的自主招生考試中,考生筆試成績分布在,隨機抽取200名考生成績作為樣本研究,按照筆試成績分成5組,第1組成績?yōu)?/span>,第2組成績?yōu)?/span>,第3組成績?yōu)?/span>,第4組成績?yōu)?/span>,第5組成績?yōu)?/span>,樣本頻率分布直方圖如下:

1)估計全體考生成績的中位數(shù);

2)為了能選撥出最優(yōu)秀的學生,該校決定在筆試成績高的第3,45組中用分層抽樣抽取6名學生進入第二輪面試,從這6名學生中隨機抽取2名學生進行外語交流面試,求這2名學生均來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓錐的軸截面為等腰為底面圓周上一點。

(1)若的中點為,求證: 平面;

(2)如果,求此圓錐的體積;

(3)若二面角大小為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖一是美麗的勾股樹,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1勾股樹,重復圖二的作法,得到圖三為第2勾股樹,以此類推,已知最大的正方形面積為1,則第勾股樹所有正方形的個數(shù)與面積的和分別為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程選講

在平面直角坐標系中,以原點為極點,以軸非負半軸為極軸建立極坐標系, 已知曲線的極坐標方程為,直線的極坐標方程為

(Ⅰ)寫出曲線和直線的直角坐標方程;

(Ⅱ)設直線過點與曲線交于不同兩點,的中點為的交點為,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求的單調遞增區(qū)間;

(2)若函數(shù)有兩個極值點恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,底面ABC,,DE分別是,的中點.

(Ⅰ)求證:

(Ⅱ)求二面角的大;

(Ⅲ)線段上是否存在點F,使平面?若存在,求的值:若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求曲線處的切線方程;

2)求函數(shù)的單調區(qū)間;

3)若函數(shù)在區(qū)間內有且只有一個極值點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5)[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

查看答案和解析>>

同步練習冊答案