A. | 4 | B. | 5 | C. | 6 | D. | 7 |
分析 求得二項式展開式的通項公式,化簡整理,再令x的指數(shù)為0,求得2n=5r,由n為正整數(shù),可得r=2,n取得最小值.
解答 解:${({x^2}-\frac{1}{x^3})^n}$的展開式的通項公式為Tr+1=${C}_{n}^{r}$•(x2)n-r•(-$\frac{1}{{x}^{3}}$)r
=${C}_{n}^{r}$•(-1)r•x2n-5r,r=0,1,2,…,n,
由題意可得2n-5r=0,
即n=$\frac{5r}{2}$,由n正整數(shù),
可得r=2時,n取得最小值5.
故選:B.
點評 本題考查二項式定理的運用:求常數(shù)項,注意運用二項式展開式的通項公式,以及指數(shù)的運算性質(zhì),考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 增函數(shù) | B. | 減函數(shù) | ||
C. | 既不是增函數(shù)也不是減函數(shù) | D. | 無法判斷 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com