分析 由圓的性質(zhì)可以類(lèi)比得到橢圓的類(lèi)似性質(zhì).
解答 解:由圓的性質(zhì)可以類(lèi)比得到橢圓的類(lèi)似性質(zhì),即kAC•kBC=-$\frac{^{2}}{{a}^{2}}$,
證明如下:設(shè)點(diǎn)A的坐標(biāo)為(m,n),則點(diǎn)B的坐標(biāo)為(-m,-n),進(jìn)而可知$\frac{{m}^{2}}{{a}^{2}}+\frac{{n}^{2}}{^{2}}$=1,
又設(shè)點(diǎn)P的坐標(biāo)為(x,y),
則kAP=$\frac{y-n}{x-m}$,kBP=$\frac{y+n}{x+m}$
∴kAP•kBP=$\frac{{y}^{2}-{n}^{2}}{{x}^{2}-{m}^{2}}$,
將y2=b2(1-$\frac{{x}^{2}}{{a}^{2}}$),n2=b2(1-$\frac{{m}^{2}}{{a}^{2}}$)代入得kAP•kBP=-$\frac{^{2}}{{a}^{2}}$.
故答案為:-$\frac{^{2}}{{a}^{2}}$.
點(diǎn)評(píng) 類(lèi)比推理的一般步驟是:(1)找出兩類(lèi)事物之間的相似性或一致性;(2)用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x≤0,x2-1<2lnx | B. | ?x>0,x2-1<2lnx | C. | ?x>0,x2-1<2lnx | D. | ?x≤0,x2-1<2lnx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | “若x2=1,則x=1”的否命題為:“若x2=1,則x≠1” | |
B. | “x=-1”是“x2-5x-6=0”的必要不充分條件 | |
C. | “?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0“ | |
D. | “△ABC中,若A>B,則sinA>sinB”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ③ | C. | ①③ | D. | ②③ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com