某商場(chǎng)銷(xiāo)售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷(xiāo)售量y (單位:千克)與銷(xiāo)售價(jià)格 (單位:元/千克)滿(mǎn)足關(guān)系式y+10(x-6)2,其中3<x<6,a為常數(shù).已知銷(xiāo)售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成品為3元/千克, 試確定銷(xiāo)售價(jià)格x的值, 使商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大.

(1) a=2 (2) 當(dāng)銷(xiāo)售價(jià)格x=4時(shí),商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大,最大值為42.

解析試題分析:解:(1)由題設(shè)知x=5時(shí)y=11,則11=+10(5-6)2,解得a=2. 3分
(2)由(1)知該商品每日的銷(xiāo)售量y+10(x-6) 2,所以商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)為
f(x)=(x-3) [+10(x-6) 2]=2+10(x-3) (x-6) 2,3<x<6.       6分
對(duì)函數(shù)f(x)求導(dǎo),得f ′(x)=10[(x-6) 2+2(x-3)(x-6)]=30(x-4)(x-6).
f ′(x)=0及3<x<6,解得x=4.                                 10分
當(dāng)3<x<4時(shí),f ′(x)>0,當(dāng)4<x<6時(shí),f ′(x)<0,于是有函數(shù)f(x)在(3,4)上遞增,在(4,6)上遞減,所以當(dāng)x=4時(shí)函數(shù)f(x)取得最大值f(4)=42.             13分
答:當(dāng)銷(xiāo)售價(jià)格x=4時(shí),商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大,最大值為42.
考點(diǎn):函數(shù)的模型的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于已知中的利潤(rùn)函數(shù)的 準(zhǔn)確表示,然后借助于導(dǎo)數(shù)的知識(shí)來(lái)得到最值,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶(hù)每月用水不超過(guò)4噸時(shí),每噸為1.80元,當(dāng)居民用水超過(guò)4噸時(shí),超過(guò)部分每噸3.00元。若某月某用戶(hù)用水量為x噸,交水費(fèi)為y元。
(1)求y關(guān)于x的函數(shù)關(guān)系
(2)若某用戶(hù)某月交水費(fèi)為31.2元,求該用戶(hù)該月的用水量。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

計(jì)算
(1)    (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某地政府鑒于某種日常食品價(jià)格增長(zhǎng)過(guò)快,欲將這種食品價(jià)格控制在適當(dāng)范圍內(nèi),決定對(duì)這種食品生產(chǎn)廠家提供政府補(bǔ)貼,設(shè)這種食品的市場(chǎng)價(jià)格為元/千克,政府補(bǔ)貼為元/千克,根據(jù)市場(chǎng)調(diào)查,當(dāng)時(shí),這種食品市場(chǎng)日供應(yīng)量萬(wàn)千克與市場(chǎng)日需量萬(wàn)千克近似地滿(mǎn)足關(guān)系:。當(dāng)市場(chǎng)價(jià)格稱(chēng)為市場(chǎng)平衡價(jià)格。
(1)將政府補(bǔ)貼表示為市場(chǎng)平衡價(jià)格的函數(shù),并求出函數(shù)的值域;
(2)為使市場(chǎng)平衡價(jià)格不高于每千克20元,政府補(bǔ)貼至少為每千克多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),有(其中為自然對(duì)數(shù)的底,).
(1)求函數(shù)的解析式;
(2)設(shè),,求證:當(dāng)時(shí),;
(3)試問(wèn):是否存在實(shí)數(shù),使得當(dāng)時(shí),的最小值是3?如果存在,求出實(shí)數(shù)的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

兩縣城A和B相距20km,現(xiàn)計(jì)劃在兩縣城外,以AB為直徑的半圓弧AB上選擇一點(diǎn)C建造垃圾處理廠,其對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城A和城B的總影響度為對(duì)城A與城B的影響度之和,記C點(diǎn)到城A的距離為,建在C處的垃圾處理廠對(duì)城A和城B的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對(duì)城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在AB的中點(diǎn)時(shí),對(duì)A和城B的總影響度為0.065。



(1)將表示成的函數(shù);
(2)判斷弧AB上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最小?若存在,求出該點(diǎn)到城A的距離;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),設(shè)
(1)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);
(2)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)
已知二次函數(shù)滿(mǎn)足
(Ⅰ)求的解析式;
(Ⅱ)當(dāng)時(shí),不等式:恒成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿(mǎn)足函數(shù): ,其中是儀器的月產(chǎn)量
(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù)
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)是多少元?(總收益=總成本+利潤(rùn))

查看答案和解析>>

同步練習(xí)冊(cè)答案