(12分)某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量
(1)將利潤表示為月產(chǎn)量的函數(shù)
(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤)

(1)
(2)當(dāng)月產(chǎn)量為300臺時,公司獲利潤最大,最大利潤為25000元

解析試題分析:(1)當(dāng)時,
=;
當(dāng)

所以所求。                              ……6分
(2)當(dāng)
,
所以當(dāng)時,,
當(dāng)
,
所以當(dāng)時,.
答:當(dāng)月產(chǎn)量為300臺時,公司獲利潤最大,最大利潤為25000元.                   ……12分
考點:本小題主要考查分段函數(shù),二次函數(shù)在實際問題中的應(yīng)用.
點評:解決實際應(yīng)用題,首先要仔細(xì)讀題,從實際問題中抽象出數(shù)學(xué)問題,進而用熟悉的數(shù)學(xué)知識求解即可,另外,解決實際問題時,不要忘記實際問題限制的定義域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y (單位:千克)與銷售價格 (單位:元/千克)滿足關(guān)系式y+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成品為3元/千克, 試確定銷售價格x的值, 使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知甲、乙兩個工廠在今年的1月份的利潤都是6萬,且乙廠在2月份的利潤是8萬元.若甲、乙兩個工廠的利潤(萬元)與月份x之間的函數(shù)關(guān)系式分別符合下列函數(shù)模型:f(x)=a1x2—4x+6,g(x)=a2b2(a1,a2,b2∈R).
(1)求函數(shù)f(x)與g(x)的解析式;
(2)求甲、乙兩個工廠今年5月份的利潤;
(3)在同一直角坐標(biāo)系下畫出函數(shù)f(x)與g(x)的草圖,并根據(jù)草圖比較今年1—10月份甲、乙兩個工廠的利潤的大小情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是(萬元)和(萬元),它們與投入資金(萬元)的關(guān)系有經(jīng)驗公式:。今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進行消毒。已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為,如圖所示。

(1)請寫出從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數(shù)關(guān)系式;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進教室。那么,從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能回到教室。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共8分)
提高二環(huán)路的車輛通行能力可有效改善整個城區(qū)的交通狀況,在一般情況下,二環(huán)路上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù)。當(dāng)二環(huán)路上的車流密度達到600輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過60輛/千米時,車流速度為80千米/小時,研究表明:當(dāng)60≤x≤600時,車流速度v是車流密度x的一次函數(shù)。
(Ⅰ)當(dāng)0≤x≤600時,求函數(shù)f(x)的表達式;
(Ⅱ)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過二環(huán)路上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值。(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù),其中
(Ⅰ)求上的單調(diào)區(qū)間;
(Ⅱ)求為自然對數(shù)的底數(shù))上的最大值;
(III)對任意給定的正實數(shù),曲線上是否存在兩點、,使得是以原點為直角頂點的直角三角形,且此三角形斜邊中點在軸上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)
已知二次函數(shù)滿足:,且
解集為
(1)求的解析式;
(2)設(shè),若上的最小值為-4,求的值.

查看答案和解析>>

同步練習(xí)冊答案