20.如圖所示是某幾何體的三視圖,則它的體積為64+12π.
 

分析 由三視圖可知:該幾何體是由上下兩部分組成,上面是一個四棱錐,下面是一個圓柱.即可得出.

解答 解:由三視圖可知:該幾何體是由上下兩部分組成,上面是一個四棱錐,下面是一個圓柱.
∴該幾何體的體積=$\frac{1}{3}×{8}^{2}×3$+π×22×3=64+12π.
故答案為:64+12π.

點(diǎn)評 本題考查了三視圖的應(yīng)用、空間幾何體的體積計算,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知關(guān)于x的一元二次函數(shù)f(x)=ax2-bx+1
(1)若f(x)<0的解集為{x|x<-$\frac{1}{2}$或x>1},求實數(shù)a、b的值.
(2)若實數(shù)a、b滿足b=a+1,求關(guān)于x的不等式f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示,點(diǎn)A,B,C是圓O上的三點(diǎn),線段OC與線段AB交于圓內(nèi)一點(diǎn)P,若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+2m$\overrightarrow{OB}$,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,則λ=( 。
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,正四棱柱ABCD-A1B1C1D1中,AD=1,D1D=2,點(diǎn)P為棱CC1的中點(diǎn).
(1)設(shè)二面角A-A1B-P的大小為θ,求sinθ的值;
(2)設(shè)M為線段A1B上的一點(diǎn),求$\frac{AM}{MP}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知某幾何體的三視圖和直觀圖如圖所示,其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.
(1)證明:平面BCN⊥平面C1NB1
(2)求二面角C-NB1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若數(shù)列{an}中不超過f(m)的項數(shù)恰為bm(m∈N*),則稱為數(shù)列{bm}是數(shù)列{an}的生成數(shù)列,稱相應(yīng)的函數(shù)f(m)是數(shù)列{an}生成{bm}的控制函數(shù).
(1)已知an=n2,且f(m)=m2,寫出b1、b2、b3;
(2)已知an=2n,且f(m)=m,求{bm}的前m項和Sm;
(3)已知an=2n,且f(m)=Am3(A∈N*),若數(shù)列{bm}中,b1,b2,b5是公差為d(d≠0)的等差數(shù)列,且b3=10,求d的值及A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.從一個棱長為1的正方體中切去一部分,得到一個幾何體,某三視圖如圖,則該幾何體的體積為( 。
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.a(chǎn)>0且a≠$\frac{1}{2}$,求g(x)=lnx-ax-$\frac{a-1}{x}$在區(qū)間[1,+∞)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知{an}是等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,a1+a2=b4,b1+b2=a2
(1)求{an}與{bn}的通項公式;
(2)記數(shù)列{an+bn}的前n項和為Tn,求Tn

查看答案和解析>>

同步練習(xí)冊答案