3.lg$\frac{{4\sqrt{2}}}{7}-lg\frac{2}{3}+lg7\sqrt{5}$=lg6+$\frac{1}{2}$.

分析 利用對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:原式=$lg\frac{\frac{4\sqrt{2}}{7}×7\sqrt{5}}{\frac{2}{3}}$=$lg(6\sqrt{10})$=lg6+$\frac{1}{2}$.
故答案為:lg6+$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)f(x)=x2+(a+2)x+3是定義域上[a,b]的偶函數(shù),則實(shí)數(shù)b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow$=(x,y)
(1)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足$\overrightarrow{a}$•$\overrightarrow$=-1的概率;
(2)若x,y在連續(xù)區(qū)間[1,6]上取值,求滿足$\overrightarrow{a}$•$\overrightarrow$<0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在四面體P-ABC中,PA,PB,PC兩兩垂直,設(shè)PA=PB=PC=a,則點(diǎn)P到平面ABC的距離為( 。
A.$\frac{\sqrt{2}a}{3}$B.$\frac{\sqrt{3}a}{3}$C.$\frac{\sqrt{6}a}{3}$D.$\frac{\sqrt{5}a}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)$f(x)={log_{\frac{1}{2}}}({x^2}-2ax+3)$是偶函數(shù),則 a=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí)$f(x)=x+\frac{a^2}{x}+7$,若f(x)≥a+1對(duì)一切 x≥0成立,則a的取值范圍為a≤-1或a≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.為迎接“雙十一”活動(dòng),某網(wǎng)店需要根據(jù)實(shí)際情況確定經(jīng)營(yíng)策略.
(1)采購(gòu)員計(jì)劃分兩次購(gòu)買一種原料,第一次購(gòu)買時(shí)價(jià)格為a元/個(gè),第二次購(gòu)買時(shí)價(jià)格為b元/個(gè)(其中a≠b).該采購(gòu)員有兩種方案:方案甲:每次購(gòu)買m個(gè);方案乙:每次購(gòu)買n元.請(qǐng)確定按照哪種方案購(gòu)買原料平均價(jià)格較。
(2)“雙十一”活動(dòng)后,網(wǎng)店計(jì)劃對(duì)原價(jià)為100元的商品兩次提價(jià),現(xiàn)有兩種方案:方案丙:第一次提價(jià)p,第二次提價(jià)q;方案丁:第一次提價(jià)$\frac{p+q}{2}$,第二次提價(jià)$\frac{p+q}{2}$,(其中p≠q)請(qǐng)確定哪種方案提價(jià)后價(jià)格較高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}x=2\sqrt{2}cosθ\\ y=3sinθ\end{array}\right.$(θ為參數(shù)),將曲線C1上每一點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)縮短為原來(lái)的$\frac{1}{3}$倍,得到曲線C,直線l的參數(shù)方程為:$\left\{\begin{array}{l}x=2+2\sqrt{3}t\\ y=1+2t\end{array}\right.$(t為參數(shù)),直線l與曲線C交于A,B兩點(diǎn).
(1)寫出曲線C和直線l在直角坐標(biāo)系下的普通方程;
(2)若P點(diǎn)的坐標(biāo)為P(2,1),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.方程2x2+(m+1)x+m=0有一正根一負(fù)根,則實(shí)數(shù)m的取值范圍是(-∞,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案