分析 (1)利用平方關(guān)系,和加減消元法,消參可得曲線C和直線l在直角坐標(biāo)系下的普通方程;
(2)若P點(diǎn)的坐標(biāo)為P(2,1),則直線l的參數(shù)方程化為標(biāo)準(zhǔn)方程:$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{3}}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}}\right.$(t為參數(shù)),代入橢圓方程,由韋達(dá)定理,可得答案.
解答 解:(1)由題意得曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.⇒\left\{\begin{array}{l}\frac{x}{{\sqrt{2}}}=cosθ\;①\\ y=sinθ\;②\end{array}\right.$,①2+②2,得$\frac{x^2}{2}+{y^2}=1$,
所以曲線C的標(biāo)準(zhǔn)方程為:$\frac{x^2}{2}+{y^2}=1$…..…(3分)
直線l的標(biāo)準(zhǔn)方程為:$x-\sqrt{3}y-2+\sqrt{3}=0$…..…(5分)
(2)將直線l的參數(shù)方程化為標(biāo)準(zhǔn)方程:$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{3}}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}}\right.$(t為參數(shù)),…(7分)
代入橢圓方程得:$5{t^2}+8(\sqrt{3}+1)t+16=0$,
所以$|{PA}|•|{PB}|=|{{t_1}{t_2}}|=\frac{16}{5}$….…(10分)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是參數(shù)方程與普通方程的互化,直線與橢圓的綜合應(yīng)用,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{1}{6}$,$\frac{1}{6}$] | B. | [-$\frac{\sqrt{6}}{6}$,$\frac{\sqrt{6}}{6}$] | C. | [-$\frac{1}{3}$,$\frac{1}{3}$] | D. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $-\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com