分析 設(shè)P(3cosθ,4sinθ),由直線OP的傾斜角為$\frac{π}{4}$,得tan$\frac{π}{4}$=$\frac{4sinθ}{3cosθ}$=1,0≤θ≤π,從而sinθ=$\frac{3}{4}cosθ$>0,由sin2θ+cos2θ=$\frac{9}{16}co{s}^{2}θ+co{s}^{2}θ$=1,得到sinθ=$\frac{3}{5}$,cosθ=$\frac{4}{5}$,由此能求出P點坐標(biāo).
解答 解:∵P為曲線$C:\left\{\begin{array}{l}x=3cosθ\\ y=4sinθ\end{array}\right.$(θ為參數(shù),0≤θ≤π)上一點,O為坐標(biāo)原點,
∴P(3cosθ,4sinθ),
∵直線OP的傾斜角為$\frac{π}{4}$,
∴tan$\frac{π}{4}$=$\frac{4sinθ}{3cosθ}$=1,0≤θ≤π,即sinθ=$\frac{3}{4}cosθ$>0,
∵sin2θ+cos2θ=$\frac{9}{16}co{s}^{2}θ+co{s}^{2}θ$=1,
解得sinθ=$\frac{3}{5}$,cosθ=$\frac{4}{5}$,∴P$({\frac{12}{5},\frac{12}{5}})$.
故答案為:$({\frac{12}{5},\frac{12}{5}})$.
點評 本題考查點的坐標(biāo)的求法,考查參數(shù)方程、同角三角函數(shù)關(guān)系式、直線的斜率公式等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{5}i$ | C. | $-\frac{1}{5}$ | D. | $-\frac{1}{5}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-e | B. | e-1 | C. | -1-e | D. | e+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}-1$ | B. | $\sqrt{2}$ | C. | $\sqrt{2}+1$ | D. | $\sqrt{2}+2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com